{"title":"Managing parallelism for stream processing in the cloud","authors":"Nathan Backman, Rodrigo Fonseca, U. Çetintemel","doi":"10.1145/2169090.2169091","DOIUrl":null,"url":null,"abstract":"Stream processing applications run continuously and have varying load. Cloud infrastructures present an attractive option to meet these fluctuating computational demands. Coordinating such resources to meet end-to-end latency objectives efficiently is important in preventing the frivolous use of cloud resources. We present a framework that parallelizes and schedules workflows of stream operators, in real-time, to meet latency objectives. It supports data- and task-parallel processing of all workflow operators, by all computing nodes, while maintaining the ordering properties of sorted data streams. We show that a latency-oriented operator scheduling policy coupled with the diversification of computing node responsibilities encourages parallelism models that achieve end-to-end latency-minimization goals. We demonstrate the effectiveness of our framework with preliminary experimental results using a variety of real-world applications on heterogeneous clusters.","PeriodicalId":183902,"journal":{"name":"HotCDP '12","volume":"295 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HotCDP '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2169090.2169091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Stream processing applications run continuously and have varying load. Cloud infrastructures present an attractive option to meet these fluctuating computational demands. Coordinating such resources to meet end-to-end latency objectives efficiently is important in preventing the frivolous use of cloud resources. We present a framework that parallelizes and schedules workflows of stream operators, in real-time, to meet latency objectives. It supports data- and task-parallel processing of all workflow operators, by all computing nodes, while maintaining the ordering properties of sorted data streams. We show that a latency-oriented operator scheduling policy coupled with the diversification of computing node responsibilities encourages parallelism models that achieve end-to-end latency-minimization goals. We demonstrate the effectiveness of our framework with preliminary experimental results using a variety of real-world applications on heterogeneous clusters.