Hierarchical large-margin Gaussian mixture models for phonetic classification

Hung-An Chang, James R. Glass
{"title":"Hierarchical large-margin Gaussian mixture models for phonetic classification","authors":"Hung-An Chang, James R. Glass","doi":"10.1109/ASRU.2007.4430123","DOIUrl":null,"url":null,"abstract":"In this paper we present a hierarchical large-margin Gaussian mixture modeling framework and evaluate it on the task of phonetic classification. A two-stage hierarchical classifier is trained by alternately updating parameters at different levels in the tree to maximize the joint margin of the overall classification. Since the loss function required in the training is convex to the parameter space the problem of spurious local minima is avoided. The model achieves good performance with fewer parameters than single-level classifiers. In the TIMIT benchmark task of context-independent phonetic classification, the proposed modeling scheme achieves a state-of-the-art phonetic classification error of 16.7% on the core test set. This is an absolute reduction of 1.6% from the best previously reported result on this task, and 4-5% lower than a variety of classifiers that have been recently examined on this task.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this paper we present a hierarchical large-margin Gaussian mixture modeling framework and evaluate it on the task of phonetic classification. A two-stage hierarchical classifier is trained by alternately updating parameters at different levels in the tree to maximize the joint margin of the overall classification. Since the loss function required in the training is convex to the parameter space the problem of spurious local minima is avoided. The model achieves good performance with fewer parameters than single-level classifiers. In the TIMIT benchmark task of context-independent phonetic classification, the proposed modeling scheme achieves a state-of-the-art phonetic classification error of 16.7% on the core test set. This is an absolute reduction of 1.6% from the best previously reported result on this task, and 4-5% lower than a variety of classifiers that have been recently examined on this task.
语音分类的分层大边际高斯混合模型
本文提出了一种分层大余量高斯混合建模框架,并在语音分类任务上对其进行了评价。通过交替更新树中不同层次的参数来训练两阶段的分层分类器,以最大化整体分类的联合裕度。由于训练所需的损失函数对参数空间是凸的,因此避免了伪局部极小值的问题。与单级分类器相比,该模型在参数较少的情况下取得了较好的性能。在上下文无关语音分类的TIMIT基准任务中,提出的建模方案在核心测试集上实现了最先进的语音分类误差为16.7%。这比之前报告的最佳结果减少了1.6%,比最近在该任务上测试的各种分类器低4-5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信