{"title":"A comprehensive neural-based approach for text recognition in videos using natural language processing","authors":"Khaoula Elagouni, Christophe Garcia, P. Sébillot","doi":"10.1145/1991996.1992019","DOIUrl":null,"url":null,"abstract":"This work aims at helping multimedia content understanding by deriving benefit from textual clues embedded in digital videos. For this, we developed a complete video Optical Character Recognition system (OCR), specifically adapted to detect and recognize embedded texts in videos. Based on a neural approach, this new method outperforms related work, especially in terms of robustness to style and size variabilities, to background complexity and to low resolution of the image. A language model that drives several steps of the video OCR is also introduced in order to remove ambiguities due to a local letter by letter recognition and to reduce segmentation errors. This approach has been evaluated on a database of French TV news videos and achieves an outstanding character recognition rate of 95%, corresponding to 78% of words correctly recognized, which enables its incorporation into an automatic video indexing and retrieval system.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This work aims at helping multimedia content understanding by deriving benefit from textual clues embedded in digital videos. For this, we developed a complete video Optical Character Recognition system (OCR), specifically adapted to detect and recognize embedded texts in videos. Based on a neural approach, this new method outperforms related work, especially in terms of robustness to style and size variabilities, to background complexity and to low resolution of the image. A language model that drives several steps of the video OCR is also introduced in order to remove ambiguities due to a local letter by letter recognition and to reduce segmentation errors. This approach has been evaluated on a database of French TV news videos and achieves an outstanding character recognition rate of 95%, corresponding to 78% of words correctly recognized, which enables its incorporation into an automatic video indexing and retrieval system.