A study on various face detection techniques in real time video environment

D. Sakharkar, S. Bodkhe
{"title":"A study on various face detection techniques in real time video environment","authors":"D. Sakharkar, S. Bodkhe","doi":"10.1109/PERVASIVE.2015.7086990","DOIUrl":null,"url":null,"abstract":"Day to day the increases in the use of social networking sites like Facebook, twitter, Instagram etc. so most of the peoples are shearing the images and videos by different social networking sites. The users are very much interested in uploading the images or videos on the internet in which most of the photos and videos contain faces. Thus with the rapidly growing photos and videos on the internet the large scale content base face image retrieval is a facilitating technology for many important applications. In this paper, we will introduce the face image retrieval technique from the video frames. Our aim is to detect human attributes automatically which contain semantic cues of face photos to improve content base face retrieval. By using human attributes in a systematic and scalable framework. The attribute-enhanced sparse coding is used to improve the performance of face retrieval in the offline and online stages. The result shows that the face images which is occurs in the video and match with our face database.","PeriodicalId":442000,"journal":{"name":"2015 International Conference on Pervasive Computing (ICPC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Pervasive Computing (ICPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERVASIVE.2015.7086990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Day to day the increases in the use of social networking sites like Facebook, twitter, Instagram etc. so most of the peoples are shearing the images and videos by different social networking sites. The users are very much interested in uploading the images or videos on the internet in which most of the photos and videos contain faces. Thus with the rapidly growing photos and videos on the internet the large scale content base face image retrieval is a facilitating technology for many important applications. In this paper, we will introduce the face image retrieval technique from the video frames. Our aim is to detect human attributes automatically which contain semantic cues of face photos to improve content base face retrieval. By using human attributes in a systematic and scalable framework. The attribute-enhanced sparse coding is used to improve the performance of face retrieval in the offline and online stages. The result shows that the face images which is occurs in the video and match with our face database.
实时视频环境下各种人脸检测技术的研究
Facebook、twitter、Instagram等社交网站的使用日益增加,所以大多数人都在不同的社交网站上剪切图像和视频。用户对上传图像或视频非常感兴趣,其中大多数照片和视频都包含人脸。因此,随着互联网上照片和视频的快速增长,大规模内容库人脸图像检索是许多重要应用的便利技术。本文将介绍基于视频帧的人脸图像检索技术。我们的目标是自动检测人脸照片中包含语义线索的人类属性,以提高基于内容的人脸检索。通过在系统和可扩展的框架中使用人的属性。利用属性增强稀疏编码提高离线和在线阶段的人脸检索性能。结果表明,视频中出现的人脸图像与我们的人脸数据库相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信