Image-Consistent Detection of Road Anomalies as Unpredictable Patches

Tomás Vojír, Jiri Matas
{"title":"Image-Consistent Detection of Road Anomalies as Unpredictable Patches","authors":"Tomás Vojír, Jiri Matas","doi":"10.1109/WACV56688.2023.00545","DOIUrl":null,"url":null,"abstract":"We propose a novel method for anomaly detection primarily aiming at autonomous driving. The design of the method, called DaCUP (Detection of anomalies as Consistent Unpredictable Patches), is based on two general properties of anomalous objects: an anomaly is (i) not from a class that could be modelled and (ii) it is not similar (in appearance) to non-anomalous objects in the image. To this end, we propose a novel embedding bottleneck in an auto-encoder like architecture that enables modelling of a diverse, multi-modal known class appearance (e.g. road). Secondly, we introduce novel image-conditioned distance features that allow known class identification in a nearest-neighbour manner on-the-fly, greatly increasing its ability to distinguish true and false positives. Lastly, an inpainting module is utilized to model the uniqueness of detected anomalies and significantly reduce false positives by filtering regions that are similar, thus reconstructable from their neighbourhood. We demonstrate that filtering of regions based on their similarity to neighbour regions, using e.g. an inpainting module, is general and can be used with other methods for reduction of false positives. The proposed method is evaluated on several publicly available datasets for road anomaly detection and on a maritime benchmark for obstacle avoidance. The method achieves state-of-the-art performance in both tasks with the same hyper-parameters with no domain specific design.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a novel method for anomaly detection primarily aiming at autonomous driving. The design of the method, called DaCUP (Detection of anomalies as Consistent Unpredictable Patches), is based on two general properties of anomalous objects: an anomaly is (i) not from a class that could be modelled and (ii) it is not similar (in appearance) to non-anomalous objects in the image. To this end, we propose a novel embedding bottleneck in an auto-encoder like architecture that enables modelling of a diverse, multi-modal known class appearance (e.g. road). Secondly, we introduce novel image-conditioned distance features that allow known class identification in a nearest-neighbour manner on-the-fly, greatly increasing its ability to distinguish true and false positives. Lastly, an inpainting module is utilized to model the uniqueness of detected anomalies and significantly reduce false positives by filtering regions that are similar, thus reconstructable from their neighbourhood. We demonstrate that filtering of regions based on their similarity to neighbour regions, using e.g. an inpainting module, is general and can be used with other methods for reduction of false positives. The proposed method is evaluated on several publicly available datasets for road anomaly detection and on a maritime benchmark for obstacle avoidance. The method achieves state-of-the-art performance in both tasks with the same hyper-parameters with no domain specific design.
道路异常不可预测斑块的图像一致性检测
我们提出了一种新的异常检测方法,主要针对自动驾驶。该方法的设计称为DaCUP(检测异常作为一致的不可预测的补丁),基于异常对象的两个一般属性:异常(i)不是来自可以建模的类,(ii)它与图像中的非异常对象不相似(在外观上)。为此,我们提出了一个新的嵌入瓶颈,在一个类似自编码器的架构中,它可以对不同的、多模态的已知类外观(例如道路)进行建模。其次,我们引入了新的图像条件距离特征,允许在飞行中以最近邻的方式进行已知类识别,大大提高了其区分真假阳性的能力。最后,利用inpainting模块对检测到的异常进行唯一性建模,并通过过滤相似的区域来显著减少误报,从而可以从邻近区域重建。我们证明了基于邻近区域相似性的区域过滤,例如使用inpainting模块,是通用的,并且可以与其他方法一起使用以减少误报。该方法在几个公开可用的道路异常检测数据集和海上避障基准数据集上进行了评估。该方法在没有特定领域设计的情况下,在具有相同超参数的两种任务中都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信