Content Based Image Retrieval with Relevance Feedback Using Riemannian Manifolds

Pushpa B. Patil, M. Kokare
{"title":"Content Based Image Retrieval with Relevance Feedback Using Riemannian Manifolds","authors":"Pushpa B. Patil, M. Kokare","doi":"10.1109/ICSIP.2014.9","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach for content-based image retrieval with relevance feedback, which is based on Riemannian Manifold learning algorithm. This method uses positive and negative (relevant/irrelevant) images labeled by the user at every feedback iteration. In this paper, we pre-computed the cost adjacency matrix and its eigenvectors corresponding to the smallest eigen values for effectiveness and efficiency of the retrieval system. Then we apply the Riemannian Manifolds learning concept to estimate the boundary between positive and negative images. Experimental results of the proposed method have been compared with earlier approaches, which show the superiority of the proposed method.","PeriodicalId":111591,"journal":{"name":"2014 Fifth International Conference on Signal and Image Processing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIP.2014.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose a novel approach for content-based image retrieval with relevance feedback, which is based on Riemannian Manifold learning algorithm. This method uses positive and negative (relevant/irrelevant) images labeled by the user at every feedback iteration. In this paper, we pre-computed the cost adjacency matrix and its eigenvectors corresponding to the smallest eigen values for effectiveness and efficiency of the retrieval system. Then we apply the Riemannian Manifolds learning concept to estimate the boundary between positive and negative images. Experimental results of the proposed method have been compared with earlier approaches, which show the superiority of the proposed method.
黎曼流形相关反馈的基于内容的图像检索
本文提出了一种基于黎曼流形学习算法的基于内容的相关反馈图像检索方法。该方法在每次反馈迭代中使用用户标记的正面和负面(相关/不相关)图像。为了提高检索系统的有效性和效率,我们预先计算了最小特征值对应的代价邻接矩阵及其特征向量。然后应用黎曼流形学习概念来估计正负图像之间的边界。将所提方法的实验结果与前人的方法进行了比较,表明了所提方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信