A non-parameter Ising model for network-based identification of differentially expressed genes in recurrent breast cancer patients

Xumeng Li, F. Feltus, Xiaoqian Sun, Zijun Wang, Feng Luo
{"title":"A non-parameter Ising model for network-based identification of differentially expressed genes in recurrent breast cancer patients","authors":"Xumeng Li, F. Feltus, Xiaoqian Sun, Zijun Wang, Feng Luo","doi":"10.1109/BIBM.2010.5706565","DOIUrl":null,"url":null,"abstract":"Identification of genes and pathways involving in diseases and physiological conditions is a major task in systems biology. In this study, we develop a new non-parameter Ising model to integrate protein-protein interaction network and microarray data for identifying differentially expressed (DE) genes. We also propose a simulated annealing algorithm to find the optimal configuration of the Ising model. We test the Ising model to two breast cancer microarray data sets. The results show that more cancer related differentially expressed subnetworks and genes are identified by the Ising model than by the Markov random filed (MRF) model.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identification of genes and pathways involving in diseases and physiological conditions is a major task in systems biology. In this study, we develop a new non-parameter Ising model to integrate protein-protein interaction network and microarray data for identifying differentially expressed (DE) genes. We also propose a simulated annealing algorithm to find the optimal configuration of the Ising model. We test the Ising model to two breast cancer microarray data sets. The results show that more cancer related differentially expressed subnetworks and genes are identified by the Ising model than by the Markov random filed (MRF) model.
用于复发性乳腺癌患者差异表达基因网络识别的非参数Ising模型
识别与疾病和生理状况有关的基因和途径是系统生物学的一项主要任务。在这项研究中,我们开发了一个新的非参数Ising模型来整合蛋白质-蛋白质相互作用网络和微阵列数据来识别差异表达(DE)基因。我们还提出了一种模拟退火算法来寻找Ising模型的最优配置。我们对两个乳腺癌微阵列数据集测试了Ising模型。结果表明,与马尔可夫随机场(MRF)模型相比,Ising模型能识别出更多与癌症相关的差异表达子网络和基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信