{"title":"Characterization and Testing of High-Entropy Alloys from AlCrFeCoNi System for Military Applications","authors":"V. Geantǎ, I. Voiculescu","doi":"10.5772/intechopen.88622","DOIUrl":null,"url":null,"abstract":"High-entropy alloys (HEAs) can be obtained using various metallurgical processes such as vacuum arc remelting (VAR), induction melting, powder metallurgy, additive manufacturing, plasma sintering of powders, etc. Among these methods, the obtaining process in the VAR plant provides superior homogeneity characteristics for metal matrices, simultaneously with advanced purity, due to the high level of protection of the melts. The chapter presents a series of results on alloys with high entropy from the AlCrFeCoNi system, which can be used for various applications, including in the military field, for the realization of high-speed penetration protection panels. Experimental alloys were obtained by melting in electric arc under an argon atmosphere, using high-purity raw materials (greater than 99.5 wt%), and homogenization is ensured by successive five-times remelting of mini-ingots. The obtained alloys were subjected to microstructural analyses, mechanical tests, and also dynamic impact tests using incendiary perforation projectiles. At the same time, some tests were carried out on ballistic packages made of different materials, including high-entropy alloys. The results obtained in mechanical tests revealed high values of microhardness (over 600 HV 0.1 ) as well as compressive strengths above 2000 MPa. The mechanical characteristics of these alloys can undergo substantial changes by applying several heat treatments.","PeriodicalId":342991,"journal":{"name":"Engineering Steels and High Entropy-Alloys","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Steels and High Entropy-Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.88622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
High-entropy alloys (HEAs) can be obtained using various metallurgical processes such as vacuum arc remelting (VAR), induction melting, powder metallurgy, additive manufacturing, plasma sintering of powders, etc. Among these methods, the obtaining process in the VAR plant provides superior homogeneity characteristics for metal matrices, simultaneously with advanced purity, due to the high level of protection of the melts. The chapter presents a series of results on alloys with high entropy from the AlCrFeCoNi system, which can be used for various applications, including in the military field, for the realization of high-speed penetration protection panels. Experimental alloys were obtained by melting in electric arc under an argon atmosphere, using high-purity raw materials (greater than 99.5 wt%), and homogenization is ensured by successive five-times remelting of mini-ingots. The obtained alloys were subjected to microstructural analyses, mechanical tests, and also dynamic impact tests using incendiary perforation projectiles. At the same time, some tests were carried out on ballistic packages made of different materials, including high-entropy alloys. The results obtained in mechanical tests revealed high values of microhardness (over 600 HV 0.1 ) as well as compressive strengths above 2000 MPa. The mechanical characteristics of these alloys can undergo substantial changes by applying several heat treatments.