Polynomial Equivalence Problems for Sum of Affine Powers

Ignacio García-Marco, P. Koiran, Timothée Pecatte
{"title":"Polynomial Equivalence Problems for Sum of Affine Powers","authors":"Ignacio García-Marco, P. Koiran, Timothée Pecatte","doi":"10.1145/3208976.3208993","DOIUrl":null,"url":null,"abstract":"A sum of affine powers is an expression of the form [f(x1,...,xn) = ∑i=1s αi li(x1,...,xn)ei] where li is an affine form. We propose polynomial time black-box algorithms that find the decomposition with the smallest value of s for an input polynomial f . Our algorithms work in situations where s is small enough compared to the number of variables or to the exponents ei. Although quite simple, this model is a generalization of Waring decomposition. This paper extends previous work on Waring decomposition as well as our work on univariate sums of affine powers (ISSAC'17).","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A sum of affine powers is an expression of the form [f(x1,...,xn) = ∑i=1s αi li(x1,...,xn)ei] where li is an affine form. We propose polynomial time black-box algorithms that find the decomposition with the smallest value of s for an input polynomial f . Our algorithms work in situations where s is small enough compared to the number of variables or to the exponents ei. Although quite simple, this model is a generalization of Waring decomposition. This paper extends previous work on Waring decomposition as well as our work on univariate sums of affine powers (ISSAC'17).
仿射幂和的多项式等价问题
仿射幂的和是如下形式的表达式[f(x1,…,xn) =∑i=1s αi li(x1,…,xn)ei],其中li是仿射形式。我们提出了多项式时间黑盒算法,用于寻找输入多项式f的最小s值的分解。我们的算法适用于s相对于变量的数量或者指数ei来说足够小的情况。虽然非常简单,但该模型是Waring分解的泛化。本文扩展了之前关于Waring分解的工作以及我们关于单变量仿射幂和的工作(ISSAC'17)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信