{"title":"Fault Localization in MANET-Hosted Service-Based Systems","authors":"P. Novotný, A. Wolf, B. J. Ko","doi":"10.1109/SRDS.2012.30","DOIUrl":null,"url":null,"abstract":"Fault localization in general refers to a technique for identifying the likely root causes of failures observed in systems formed from components. Fault localization in systems deployed on mobile ad hoc networks (MANETs) is a particularly challenging task because those systems are subject to a wider variety and higher incidence of faults than those deployed in fixed networks, the resources available to track fault symptoms are severely limited, and many of the sources of faults in MANETs are by their nature transient. We present a method for localizing the faults occurring in service-based systems hosted on MANETs. The method is based on the use of dependence data that are discovered dynamically through decentralized observations of service interactions. We employ both Bayesian and timing-based reasoning techniques to analyze the data in the context of a specific fault propagation model, deriving a ranked list of candidate fault locations. We present the results of an extensive set of experiments exploring a wide range of operational conditions to evaluate the accuracy of our method.","PeriodicalId":447700,"journal":{"name":"2012 IEEE 31st Symposium on Reliable Distributed Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 31st Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2012.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Fault localization in general refers to a technique for identifying the likely root causes of failures observed in systems formed from components. Fault localization in systems deployed on mobile ad hoc networks (MANETs) is a particularly challenging task because those systems are subject to a wider variety and higher incidence of faults than those deployed in fixed networks, the resources available to track fault symptoms are severely limited, and many of the sources of faults in MANETs are by their nature transient. We present a method for localizing the faults occurring in service-based systems hosted on MANETs. The method is based on the use of dependence data that are discovered dynamically through decentralized observations of service interactions. We employ both Bayesian and timing-based reasoning techniques to analyze the data in the context of a specific fault propagation model, deriving a ranked list of candidate fault locations. We present the results of an extensive set of experiments exploring a wide range of operational conditions to evaluate the accuracy of our method.