Meta-heuristic Artificial Humming Bird Algorithm Based Energy Efficient Cluster Head Selection (MAHA-EECHS) in Wireless Sensor Networks

Vipan Kusla, Gurbinder Singh Brar, Vikas K. Garg, Ankit Bansal, R. Kaushal
{"title":"Meta-heuristic Artificial Humming Bird Algorithm Based Energy Efficient Cluster Head Selection (MAHA-EECHS) in Wireless Sensor Networks","authors":"Vipan Kusla, Gurbinder Singh Brar, Vikas K. Garg, Ankit Bansal, R. Kaushal","doi":"10.1109/ESCI56872.2023.10100064","DOIUrl":null,"url":null,"abstract":"A wireless sensor network (WSN) improves wireless communication by using hundreds or thousands of nodes to gather data. The lifespan of the nodes and balanced energy consumption are the major issues in the WSN. Long-term WSN efficiency requires optimising node energy. Selecting the optimal node as the cluster head improves energy usage in wireless sensor networks. The Artificial Hummingbird algorithm is used in this paper to identify the best cluster head selection in homogenous wireless sensor networks. The proposed algorithm's innovation lies in the fact that it takes into account a number of parameters like residual energy, intra-cluster distance, and balanced cluster formation while choosing a CH from a homogeneous sensor network. The performance analysis of the proposed algorithm considers four parameters: average energy consumption, total energy consumption, first node death, and residual energy. When compared to other algorithms, MATLAB-based simulation analyses show that the proposed algorithm MAHA-EECHS outperforms them.","PeriodicalId":441215,"journal":{"name":"2023 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI56872.2023.10100064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A wireless sensor network (WSN) improves wireless communication by using hundreds or thousands of nodes to gather data. The lifespan of the nodes and balanced energy consumption are the major issues in the WSN. Long-term WSN efficiency requires optimising node energy. Selecting the optimal node as the cluster head improves energy usage in wireless sensor networks. The Artificial Hummingbird algorithm is used in this paper to identify the best cluster head selection in homogenous wireless sensor networks. The proposed algorithm's innovation lies in the fact that it takes into account a number of parameters like residual energy, intra-cluster distance, and balanced cluster formation while choosing a CH from a homogeneous sensor network. The performance analysis of the proposed algorithm considers four parameters: average energy consumption, total energy consumption, first node death, and residual energy. When compared to other algorithms, MATLAB-based simulation analyses show that the proposed algorithm MAHA-EECHS outperforms them.
基于元启发式人工蜂鸟算法的无线传感器网络高效簇头选择(MAHA-EECHS)
无线传感器网络(WSN)通过使用数百或数千个节点收集数据来改进无线通信。节点寿命和能量消耗平衡是无线传感器网络的主要问题。长期的无线传感器网络效率需要优化节点能量。选择最优节点作为簇头可以提高无线传感器网络的能量利用率。本文采用人工蜂鸟算法来识别同质无线传感器网络中簇头的最佳选择。该算法的创新之处在于,在从同质传感器网络中选择CH时,考虑了剩余能量、簇内距离、平衡簇形成等多个参数。算法的性能分析考虑了四个参数:平均能耗、总能耗、第一节点死亡和剩余能量。与其他算法相比,基于matlab的仿真分析表明,MAHA-EECHS算法优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信