Analysis of Experimental Data and Quantifying Influence of Dimensionless Material Properties, Velocity and Aspect Ratio on Ice-induced Forces on Vertical Structures
{"title":"Analysis of Experimental Data and Quantifying Influence of Dimensionless Material Properties, Velocity and Aspect Ratio on Ice-induced Forces on Vertical Structures","authors":"A. Arunachalam","doi":"10.5957/icetech-2014-155","DOIUrl":null,"url":null,"abstract":"In this paper, the quantitative influence of aspect ratio (B/h), and dimensionless velocity or thickness Froude number [TFN = u/√(gh)] on dimensionless ice-induced pressures (pe/ρiu2) is briefly reviewed and discussed. Since material properties of ice (E, σf, K1c) have not been reported for many data-sets, a strategy for generating appropriate material properties for ice is proposed. Two dimensionless terms for material properties of ice, {(E/σf)×[K1c/(σf√h)]} and {[K1c/(σfu)]×√[E/(ρih)]} were identified and their influence on pe/ρiu2 is discussed. It was found that (1) pe/ρiu2 on rigid vertical structures decreases with (a) increasing B/h at a rate of about 0.42, when u/√(gh) and {[K1c/(σfu)]×√[E/(ρih)]} remain constant; (b) pe/ρiu2 decreases with increasing u/√(gh) at a rate of about 1.80 when u/√(gh) is < about 6.0×10-3and at a rate of about 1.93 when u/√(gh) is > about 6.0×10-3 when B/h and {[K1c/(σfu)]×√[E/(ρih)]} remain constant. (2) Preliminary analyses of the datasets shows that pe/ρiu2 decreases with increasing {(E/σf)× [K1c/(σf√h)]} at a rate of 0.335 and 0.469 and that pe/ρiu2 decreases with increasing {[K1c/(σfu)]×√[E/(ρih)]} at a rate of 0.729 and 0.808. (3) It was also found that shapes of structures do not influence dimensionless ice-induced pressures on structures.","PeriodicalId":176359,"journal":{"name":"Day 3 Wed, July 30, 2014","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, July 30, 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/icetech-2014-155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the quantitative influence of aspect ratio (B/h), and dimensionless velocity or thickness Froude number [TFN = u/√(gh)] on dimensionless ice-induced pressures (pe/ρiu2) is briefly reviewed and discussed. Since material properties of ice (E, σf, K1c) have not been reported for many data-sets, a strategy for generating appropriate material properties for ice is proposed. Two dimensionless terms for material properties of ice, {(E/σf)×[K1c/(σf√h)]} and {[K1c/(σfu)]×√[E/(ρih)]} were identified and their influence on pe/ρiu2 is discussed. It was found that (1) pe/ρiu2 on rigid vertical structures decreases with (a) increasing B/h at a rate of about 0.42, when u/√(gh) and {[K1c/(σfu)]×√[E/(ρih)]} remain constant; (b) pe/ρiu2 decreases with increasing u/√(gh) at a rate of about 1.80 when u/√(gh) is < about 6.0×10-3and at a rate of about 1.93 when u/√(gh) is > about 6.0×10-3 when B/h and {[K1c/(σfu)]×√[E/(ρih)]} remain constant. (2) Preliminary analyses of the datasets shows that pe/ρiu2 decreases with increasing {(E/σf)× [K1c/(σf√h)]} at a rate of 0.335 and 0.469 and that pe/ρiu2 decreases with increasing {[K1c/(σfu)]×√[E/(ρih)]} at a rate of 0.729 and 0.808. (3) It was also found that shapes of structures do not influence dimensionless ice-induced pressures on structures.