{"title":"Two phase transitions in the adaptive voter model based on the homophily principle","authors":"Takashi Ishikawa","doi":"10.1109/ASONAM.2014.6921579","DOIUrl":null,"url":null,"abstract":"Dynamics on and of networks are two basic processes that drive coevolving networks such as online social networks. The paper investigates the mechanism of coevolving networks using a generalized adaptive voter model based on related work and the homophily principle which is known as a driving mechanism to form community structure in social networks. The proposed model has mechanisms for dynamics on and of coevolving networks, which are node state change via social interactions and link rewiring based on homophily. The numerical simulation of the proposed model reveals that there exists two phase transitions for the parameters adaptability and homophily. This observation implies that the nature of the homophily principle lies in the adaptive mechanism in the proposed model.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamics on and of networks are two basic processes that drive coevolving networks such as online social networks. The paper investigates the mechanism of coevolving networks using a generalized adaptive voter model based on related work and the homophily principle which is known as a driving mechanism to form community structure in social networks. The proposed model has mechanisms for dynamics on and of coevolving networks, which are node state change via social interactions and link rewiring based on homophily. The numerical simulation of the proposed model reveals that there exists two phase transitions for the parameters adaptability and homophily. This observation implies that the nature of the homophily principle lies in the adaptive mechanism in the proposed model.