Global exponential stability of fuzzy logical BAM neural networks with Markovian jumping parameters

Zhengfeng Zhang, Wuneng Zhou, Dongyi Yang
{"title":"Global exponential stability of fuzzy logical BAM neural networks with Markovian jumping parameters","authors":"Zhengfeng Zhang, Wuneng Zhou, Dongyi Yang","doi":"10.1109/ICNC.2011.6022081","DOIUrl":null,"url":null,"abstract":"In this paper, the global exponential stability of fuzzy logical bidirectional associative memory (BAM) neural networks with Markovian jumping parameters is investigated. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process and governed by a Markov process with discrete and finite-state space. The purpose of the problem addressed is to derive some new sufficient conditions to ensure the global exponential stability of the fuzzy logical BAM neural networks with Markovian jumping parameters. By employing a new Lyapunov-Krasovshkii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions. Finally a numerical example is provided to demonstrate the effectiveness of the proposed results.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the global exponential stability of fuzzy logical bidirectional associative memory (BAM) neural networks with Markovian jumping parameters is investigated. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process and governed by a Markov process with discrete and finite-state space. The purpose of the problem addressed is to derive some new sufficient conditions to ensure the global exponential stability of the fuzzy logical BAM neural networks with Markovian jumping parameters. By employing a new Lyapunov-Krasovshkii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions. Finally a numerical example is provided to demonstrate the effectiveness of the proposed results.
具有马尔可夫跳跃参数的模糊逻辑BAM神经网络的全局指数稳定性
研究了具有马尔可夫跳跃参数的模糊逻辑双向联想记忆(BAM)神经网络的全局指数稳定性。本文所考虑的跳跃参数是由一个连续时间离散状态齐次马尔可夫过程产生的,并由一个具有离散和有限状态空间的马尔可夫过程控制。研究了具有马尔可夫跳变参数的模糊逻辑BAM神经网络全局指数稳定性的一些新的充分条件。利用一种新的Lyapunov-Krasovshkii泛函,提出了一种线性矩阵不等式(LMI)方法来建立所需的充分条件。最后通过数值算例验证了所提结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信