{"title":"A process variation tolerant DLL-based UWB frequency synthesizer","authors":"Amin Ojani, B. Mesgarzadeh, A. Alvandpour","doi":"10.1109/MWSCAS.2012.6292081","DOIUrl":null,"url":null,"abstract":"A calibration technique for compensation of the generated phase error at the band hopping instant is proposed for a fast-hopping DLL-based injection-locked frequency synthesizer for WiMedia UWB band group #1. This technique makes the accuracy of the phase error compensation immune to process variations and so the VCDL nonlinearity. Simulated in 65-nm CMOS technology, the average synthesizer hopping time is 4 ns for all process corners. The phase noise performance at 1 MHz offset from 4488 MHz carrier is -121 dBc/Hz and the adjacent spur level from the Monte Carlo simulation is -37 dBc. Excluding the CML divider, the synthesizer consumes 7.7 mW from a 1.2 V supply.","PeriodicalId":324891,"journal":{"name":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2012.6292081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A calibration technique for compensation of the generated phase error at the band hopping instant is proposed for a fast-hopping DLL-based injection-locked frequency synthesizer for WiMedia UWB band group #1. This technique makes the accuracy of the phase error compensation immune to process variations and so the VCDL nonlinearity. Simulated in 65-nm CMOS technology, the average synthesizer hopping time is 4 ns for all process corners. The phase noise performance at 1 MHz offset from 4488 MHz carrier is -121 dBc/Hz and the adjacent spur level from the Monte Carlo simulation is -37 dBc. Excluding the CML divider, the synthesizer consumes 7.7 mW from a 1.2 V supply.