Relaxation labeling of Markov random fields

S. Li, Han Wang, M. Petrou
{"title":"Relaxation labeling of Markov random fields","authors":"S. Li, Han Wang, M. Petrou","doi":"10.1109/ICPR.1994.576334","DOIUrl":null,"url":null,"abstract":"Using Markov random field (MRF) theory, a variety of computer vision problems can be modeled in terms of optimization based on the maximum a posteriori (MAP) criterion. The MAP configuration minimizes the energy of a posterior (Gibbs) distribution. When the label set is discrete, the minimization is combinatorial. This paper proposes to use the continuous relaxation labeling (RL) method for the minimization. The RL converts the original NP complete problem into one of polynomial complexity. Annealing may be combined into the RL process to improve the quality (globalness) of RL solutions. Performance comparison among four different RL algorithms is given.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Using Markov random field (MRF) theory, a variety of computer vision problems can be modeled in terms of optimization based on the maximum a posteriori (MAP) criterion. The MAP configuration minimizes the energy of a posterior (Gibbs) distribution. When the label set is discrete, the minimization is combinatorial. This paper proposes to use the continuous relaxation labeling (RL) method for the minimization. The RL converts the original NP complete problem into one of polynomial complexity. Annealing may be combined into the RL process to improve the quality (globalness) of RL solutions. Performance comparison among four different RL algorithms is given.
马尔可夫随机场的松弛标记
利用马尔可夫随机场(MRF)理论,可以根据最大后验准则(MAP)对各种计算机视觉问题进行建模。MAP配置使后验(吉布斯)分布的能量最小化。当标签集是离散的时,最小化是组合的。本文提出使用连续松弛标记(RL)方法进行最小化。RL将原来的NP完全问题转化为多项式复杂度问题。退火可以结合到RL过程中,以提高RL解决方案的质量(整体性)。给出了四种不同强化学习算法的性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信