Evolutionary approach for approximation of artificial neural network

S. Pal, Swati Vipsita, P. Patra
{"title":"Evolutionary approach for approximation of artificial neural network","authors":"S. Pal, Swati Vipsita, P. Patra","doi":"10.1109/IADCC.2010.5423015","DOIUrl":null,"url":null,"abstract":"Neural Network is an effective tool in the field of pattern recognition. The neural network classifies the pattern from the training data and recognizes if the testing data holds that pattern. The classical Back propagation (BP) algorithm is generally used to train the neural network for its simplicity. The basic drawback of this algorithm is its uncertainty and long training time and it searches the local optima and not the global optima. To overcome the drawback of Back propagation (BP) algorithm, here we use a hybrid evolutionary approach (GA-NN algorithm) to train neural networks. The aim of this algorithm is to find the optimized synaptic weight of neural network so as to escape from local minima and overcome the drawbacks of BP. The implementation is done taking images as input in “.png”and “.tif” format.","PeriodicalId":249763,"journal":{"name":"2010 IEEE 2nd International Advance Computing Conference (IACC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 2nd International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2010.5423015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Neural Network is an effective tool in the field of pattern recognition. The neural network classifies the pattern from the training data and recognizes if the testing data holds that pattern. The classical Back propagation (BP) algorithm is generally used to train the neural network for its simplicity. The basic drawback of this algorithm is its uncertainty and long training time and it searches the local optima and not the global optima. To overcome the drawback of Back propagation (BP) algorithm, here we use a hybrid evolutionary approach (GA-NN algorithm) to train neural networks. The aim of this algorithm is to find the optimized synaptic weight of neural network so as to escape from local minima and overcome the drawbacks of BP. The implementation is done taking images as input in “.png”and “.tif” format.
人工神经网络逼近的进化方法
神经网络是模式识别领域的有效工具。神经网络从训练数据中对模式进行分类,并识别测试数据是否符合该模式。经典的反向传播(BP)算法由于其简单性,通常用于神经网络的训练。该算法的基本缺点是不确定性大和训练时间长,而且它搜索的是局部最优,而不是全局最优。为了克服反向传播(BP)算法的缺点,本文采用混合进化方法(GA-NN算法)来训练神经网络。该算法的目的是寻找神经网络的最优突触权值,从而摆脱局部极小值,克服BP算法的缺点。实现是以“。png”和“。tif”格式的图像作为输入完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信