Typical and Extremal Linear Programs

G. Ziegler
{"title":"Typical and Extremal Linear Programs","authors":"G. Ziegler","doi":"10.1137/1.9780898718805.ch14","DOIUrl":null,"url":null,"abstract":"Viewed geometrically, the simplex algorithm on a (primally and dually non-degenerate) linear program traces a monotone edge path from the starting vertex to the (unique) optimum. Which path it takes depends on the pivot rule. In this paper we survey geometric and combinatorial aspects of the situation: How do “real” linear programs and their polyhedra look like? How long can simplex paths be in the worst case? Do short paths always exist? Can we expect randomized pivot rules (such as Random Edge) or deterministic rules (such as Zadeh’s rule) to find short paths? MSC 2000. 90C05, 52B11","PeriodicalId":416196,"journal":{"name":"The Sharpest Cut","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sharpest Cut","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9780898718805.ch14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Viewed geometrically, the simplex algorithm on a (primally and dually non-degenerate) linear program traces a monotone edge path from the starting vertex to the (unique) optimum. Which path it takes depends on the pivot rule. In this paper we survey geometric and combinatorial aspects of the situation: How do “real” linear programs and their polyhedra look like? How long can simplex paths be in the worst case? Do short paths always exist? Can we expect randomized pivot rules (such as Random Edge) or deterministic rules (such as Zadeh’s rule) to find short paths? MSC 2000. 90C05, 52B11
典型和极值线性规划
从几何上看,单纯形算法在一个(原始和对偶非退化)线性规划上沿着一条从起始点到(唯一)最优点的单调边缘路径。它走哪条路取决于枢轴法则。在本文中,我们调查了这种情况的几何和组合方面:“真正的”线性规划和它们的多面体是什么样的?最坏情况下单纯形路径的长度是多少?短路径总是存在吗?我们能指望随机枢轴规则(如Random Edge)或确定性规则(如Zadeh规则)找到短路径吗?2000年MSC。90 c05 52 b11
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信