AWA Long-Term Recorded Speech Corpus And Robust Speaker Recognition Method For Session Variability

S. Tsuge, S. Kuroiwa, Tomoko Ohsuga, Y. Ishimoto
{"title":"AWA Long-Term Recorded Speech Corpus And Robust Speaker Recognition Method For Session Variability","authors":"S. Tsuge, S. Kuroiwa, Tomoko Ohsuga, Y. Ishimoto","doi":"10.1109/ICSDA.2018.8693004","DOIUrl":null,"url":null,"abstract":"Session variability is one of the most important issues in the speaker recognition technology. On the other hand, our scientific interest lies in how individual voice changes as time progresses and where the limit of the changes. From these motivations, we have been constructing “AWA Long-Term Recorded speech corpus (AWA-LTR)” that contains one's same content speech recorded at morning, noon, and evening once a week for over 10 years using the same microphone in a soundproof chamber. AWA-LTR first version has been released by Speech Resources Consortium, National Institute of Informatics (NII-SRC), Japan in 2012. In addition, we will release AWA-LTR second version in 2018. Hence, in this paper, we describe the details of AWA-LTR and the data release schedule of this corpus. As an effective application example using the corpus, we propose a robust speaker recognition method for session variability and evaluate the proposed method by the speaker identification experiment in this paper.","PeriodicalId":303819,"journal":{"name":"2018 Oriental COCOSDA - International Conference on Speech Database and Assessments","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Oriental COCOSDA - International Conference on Speech Database and Assessments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSDA.2018.8693004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Session variability is one of the most important issues in the speaker recognition technology. On the other hand, our scientific interest lies in how individual voice changes as time progresses and where the limit of the changes. From these motivations, we have been constructing “AWA Long-Term Recorded speech corpus (AWA-LTR)” that contains one's same content speech recorded at morning, noon, and evening once a week for over 10 years using the same microphone in a soundproof chamber. AWA-LTR first version has been released by Speech Resources Consortium, National Institute of Informatics (NII-SRC), Japan in 2012. In addition, we will release AWA-LTR second version in 2018. Hence, in this paper, we describe the details of AWA-LTR and the data release schedule of this corpus. As an effective application example using the corpus, we propose a robust speaker recognition method for session variability and evaluate the proposed method by the speaker identification experiment in this paper.
基于会话变异性的AWA长期录音语料库和鲁棒说话人识别方法
会话可变性是说话人识别技术中的一个重要问题。另一方面,我们的科学兴趣在于个人的声音如何随着时间的推移而变化,以及变化的极限在哪里。基于这些动机,我们一直在构建“AWA长期录音语音语料库(AWA- ltr)”,该语料库包含一个人在隔声室中使用同一麦克风,每周一次,在早上,中午和晚上录制相同内容的语音,持续10年以上。AWA-LTR第一版于2012年由日本国立信息研究所(NII-SRC)语音资源联盟发布。此外,我们将在2018年发布AWA-LTR第二版。因此,在本文中,我们描述了AWA-LTR的细节和该语料库的数据发布时间表。作为使用语料库的有效应用实例,本文提出了一种基于会话变异性的鲁棒说话人识别方法,并通过说话人识别实验对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信