Genetic Algorithm-Based Test Parameter Optimization for ADAS System Testing

Florian Klück, Martin Zimmermann, F. Wotawa, M. Nica
{"title":"Genetic Algorithm-Based Test Parameter Optimization for ADAS System Testing","authors":"Florian Klück, Martin Zimmermann, F. Wotawa, M. Nica","doi":"10.1109/QRS.2019.00058","DOIUrl":null,"url":null,"abstract":"In this paper, we outline the use of a genetic algorithm for test parameter optimization in the context of autonomous and automated driving. Our approach iteratively optimizes test parameters to aim at obtaining critical scenarios that form the basis for virtual verification and validation of Advanced Driver Assistant Systems (ADAS). We consider a test scenario to be critical if the underlying parameter set causes a malfunction of the system equipped with the ADAS function (i.e., near crash or crash of the vehicle). For evaluating the effectiveness of our approach, we set up an automated simulation framework, where we simulated the Euro NCAP car-to-car rear scenario. To assess the criticality of each test scenario we rely on time-to-collision (TTC), which is a well-known and often used time-based safety indicator for recognizing rear-end conflicts. Our genetic algorithm approach showed a higher chance to generate a critical scenario, compared to a random selection of test parameters.","PeriodicalId":122665,"journal":{"name":"2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2019.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

In this paper, we outline the use of a genetic algorithm for test parameter optimization in the context of autonomous and automated driving. Our approach iteratively optimizes test parameters to aim at obtaining critical scenarios that form the basis for virtual verification and validation of Advanced Driver Assistant Systems (ADAS). We consider a test scenario to be critical if the underlying parameter set causes a malfunction of the system equipped with the ADAS function (i.e., near crash or crash of the vehicle). For evaluating the effectiveness of our approach, we set up an automated simulation framework, where we simulated the Euro NCAP car-to-car rear scenario. To assess the criticality of each test scenario we rely on time-to-collision (TTC), which is a well-known and often used time-based safety indicator for recognizing rear-end conflicts. Our genetic algorithm approach showed a higher chance to generate a critical scenario, compared to a random selection of test parameters.
基于遗传算法的ADAS系统测试参数优化
在本文中,我们概述了在自动驾驶和自动驾驶的背景下使用遗传算法进行测试参数优化。我们的方法反复优化测试参数,旨在获得关键场景,为高级驾驶辅助系统(ADAS)的虚拟验证和验证奠定基础。如果潜在参数集导致配备ADAS功能的系统发生故障(即车辆接近碰撞或碰撞),我们认为测试场景是关键的。为了评估我们的方法的有效性,我们建立了一个自动模拟框架,在那里我们模拟了欧洲NCAP汽车对汽车后方的场景。为了评估每个测试场景的严重性,我们依赖于碰撞时间(TTC),这是一个众所周知的、经常用于识别追尾冲突的基于时间的安全指标。与随机选择测试参数相比,我们的遗传算法方法显示出更高的机会生成关键场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信