Probabilistic Graphical Models and Their Applications in Intelligent Environments

L. Sucar
{"title":"Probabilistic Graphical Models and Their Applications in Intelligent Environments","authors":"L. Sucar","doi":"10.1109/IE.2012.66","DOIUrl":null,"url":null,"abstract":"Intelligent environments need to acquire, combine and interpret the user's requests and take the best decisions according to the user needs. Thus, they require intelligent agents that reason under uncertainty to achieve the system goals. Probabilistic graphical models (PGMs) allow intelligent agents to reason and take optimal decisions under uncertainty, in an effective and efficient way. We present an overview of PGMs and describe two applications for intelligent environments: (i) information validation, (ii) adaptation to the user.","PeriodicalId":156841,"journal":{"name":"2012 Eighth International Conference on Intelligent Environments","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth International Conference on Intelligent Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE.2012.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intelligent environments need to acquire, combine and interpret the user's requests and take the best decisions according to the user needs. Thus, they require intelligent agents that reason under uncertainty to achieve the system goals. Probabilistic graphical models (PGMs) allow intelligent agents to reason and take optimal decisions under uncertainty, in an effective and efficient way. We present an overview of PGMs and describe two applications for intelligent environments: (i) information validation, (ii) adaptation to the user.
概率图模型及其在智能环境中的应用
智能环境需要获取、组合和解读用户的请求,并根据用户需求做出最佳决策。因此,他们需要在不确定性下进行推理的智能代理来实现系统目标。概率图形模型(PGMs)允许智能体在不确定的情况下进行推理并做出最优决策。我们概述了PGMs,并描述了智能环境中的两种应用:(i)信息验证,(ii)适应用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信