A Review on the Prediction of Energy Consumption in the Industry Sector Based on Machine Learning Approaches

Mouad Bahij, M. Labbadi, M. Cherkaoui, Chakib Chatri, Ali Elkhatiri, Achraf Elouerghi
{"title":"A Review on the Prediction of Energy Consumption in the Industry Sector Based on Machine Learning Approaches","authors":"Mouad Bahij, M. Labbadi, M. Cherkaoui, Chakib Chatri, Ali Elkhatiri, Achraf Elouerghi","doi":"10.1109/ISAECT53699.2021.9668559","DOIUrl":null,"url":null,"abstract":"Energy efficiency in industry provides some promising solutions for industrial decarbonization and reduction of negative environ-mental impacts. Nowadays, the digitalization of the industry offers an intelligent industrial work network, which allows the use of learning algorithms for the prediction of energy consumption in order to lower the energy bill. This paper investigates different approaches used to predict energy consumption in industry, including Multiple Linear Regression (MLR), Decision Tree (DT), Artificial Neural Networks (ANN) and Recurrent Neural Networks (RNN) based on data collected of meteorological conditions, energy consumption, and lighting in the industry. The review results indicate that the MLR approach is the best forecasting method.","PeriodicalId":137636,"journal":{"name":"2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAECT53699.2021.9668559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Energy efficiency in industry provides some promising solutions for industrial decarbonization and reduction of negative environ-mental impacts. Nowadays, the digitalization of the industry offers an intelligent industrial work network, which allows the use of learning algorithms for the prediction of energy consumption in order to lower the energy bill. This paper investigates different approaches used to predict energy consumption in industry, including Multiple Linear Regression (MLR), Decision Tree (DT), Artificial Neural Networks (ANN) and Recurrent Neural Networks (RNN) based on data collected of meteorological conditions, energy consumption, and lighting in the industry. The review results indicate that the MLR approach is the best forecasting method.
基于机器学习方法的工业部门能耗预测研究进展
工业能源效率为工业脱碳和减少对环境的负面影响提供了一些有前途的解决方案。如今,工业的数字化提供了一个智能工业工作网络,它允许使用学习算法来预测能源消耗,以降低能源费用。本文研究了基于气象条件、能源消耗和照明数据的工业能源消耗预测方法,包括多元线性回归(MLR)、决策树(DT)、人工神经网络(ANN)和循环神经网络(RNN)。综述结果表明,多线性回归方法是最好的预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信