{"title":"Construção do modelo preditivo de desligamento de colaboradores","authors":"Victor Thadeu Brum Sansone, Rodrigo Dalla Vecchia","doi":"10.6008/cbpc2179-684x.2021.004.0012","DOIUrl":null,"url":null,"abstract":"Atualmente se observa a crescente necessidade das empresas em gerenciar a sua força de trabalho, visando à manutenção de profissionais qualificados e redução dos custos associados a processos demissionais. Somado a isso, constatam-se avanços no campo de investigação de Machine Learning, que possibilita a descrição de cenários futuros a partir de modelos preditivos orientados por dados. Essa combinação de fatores tem possibilitado às empresas o investimento em meios para prever quando seus funcionários estão mais propensos a deixar as organizações, antecipando-se à perda de talentos e reduzindo custos operacionais. Dessa forma, este estudo se propôs a construir um modelo preditivo de desligamento de colaboradores para uma instituição financeira no Brasil, além de compreender os principais fatores vinculados à rotatividade. O estudo foi conduzido testando-se o desempenho dos algoritmos K-Nearest Neighbour, Regressão Múltipla, Naive Bayes e Random Forest em uma base de dados contendo informações dos trabalhadores, coletada ao longo de um ano. Evidenciou-se que o melhor modelo preditivo foi construído a partir da técnica Random Forest, que apresentou acurácia de 78,3% e precisão de 81,5%. Observou-se também que as características pessoais, como idade e número de filhos, e profissionais, como remuneração e avaliação anual de desempenho, foram as variáveis mais relevantes para a classificação de um profissional como propenso ou não a deixar a empresa.","PeriodicalId":110758,"journal":{"name":"Revista Brasileira de Administração Científica","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Administração Científica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6008/cbpc2179-684x.2021.004.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Atualmente se observa a crescente necessidade das empresas em gerenciar a sua força de trabalho, visando à manutenção de profissionais qualificados e redução dos custos associados a processos demissionais. Somado a isso, constatam-se avanços no campo de investigação de Machine Learning, que possibilita a descrição de cenários futuros a partir de modelos preditivos orientados por dados. Essa combinação de fatores tem possibilitado às empresas o investimento em meios para prever quando seus funcionários estão mais propensos a deixar as organizações, antecipando-se à perda de talentos e reduzindo custos operacionais. Dessa forma, este estudo se propôs a construir um modelo preditivo de desligamento de colaboradores para uma instituição financeira no Brasil, além de compreender os principais fatores vinculados à rotatividade. O estudo foi conduzido testando-se o desempenho dos algoritmos K-Nearest Neighbour, Regressão Múltipla, Naive Bayes e Random Forest em uma base de dados contendo informações dos trabalhadores, coletada ao longo de um ano. Evidenciou-se que o melhor modelo preditivo foi construído a partir da técnica Random Forest, que apresentou acurácia de 78,3% e precisão de 81,5%. Observou-se também que as características pessoais, como idade e número de filhos, e profissionais, como remuneração e avaliação anual de desempenho, foram as variáveis mais relevantes para a classificação de um profissional como propenso ou não a deixar a empresa.