Gabriele Pozzato, S. Formentin, Giulio Panzani, S. Savaresi
{"title":"Least Costly Energy Management for Extended Range Electric Vehicles with Start-Up Characterization","authors":"Gabriele Pozzato, S. Formentin, Giulio Panzani, S. Savaresi","doi":"10.1109/CCTA.2018.8511621","DOIUrl":null,"url":null,"abstract":"In this work, the Energy Management Strategy (EMS) problem is solved considering an Electric Vehicle (EV) equipped with a Range Extender (REX), a device developed to increase the All Electric Range (AER) provided by the battery, which can be switched ON and OFF depending on the need. First, a control-oriented modeling of the powertrain is introduced focusing attention on REX description in terms of power generation, and thermal dynamics. Secondly, the EMS problem is formalized as a mixed-integer convex program. Thus, the optimal energy management policy is obtained by minimizing an objective function taking into account electricity and battery aging costs, REX fuel consumption and start-up costs. The introduction of REX thermal dynamics allows for temperature varying start-up costs and simplified REX aging modeling. To show the effectiveness of the EMS, an electric bus case study is dealt with and a sensitivity analysis is performed over some critical optimization parameters to understand when purchasing a REX is interesting and economically effective.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work, the Energy Management Strategy (EMS) problem is solved considering an Electric Vehicle (EV) equipped with a Range Extender (REX), a device developed to increase the All Electric Range (AER) provided by the battery, which can be switched ON and OFF depending on the need. First, a control-oriented modeling of the powertrain is introduced focusing attention on REX description in terms of power generation, and thermal dynamics. Secondly, the EMS problem is formalized as a mixed-integer convex program. Thus, the optimal energy management policy is obtained by minimizing an objective function taking into account electricity and battery aging costs, REX fuel consumption and start-up costs. The introduction of REX thermal dynamics allows for temperature varying start-up costs and simplified REX aging modeling. To show the effectiveness of the EMS, an electric bus case study is dealt with and a sensitivity analysis is performed over some critical optimization parameters to understand when purchasing a REX is interesting and economically effective.