Enhanced Energy Saving Performance in Composite Trigeneration Systems

G. Chicco, P. Mancarella
{"title":"Enhanced Energy Saving Performance in Composite Trigeneration Systems","authors":"G. Chicco, P. Mancarella","doi":"10.1109/PCT.2007.4538524","DOIUrl":null,"url":null,"abstract":"Small-scale cogeneration prime movers (below 1 MWJ such as microturbines and internal combustion engines can be effectively coupled to absorption chillers fed by cogenerated heat and/or electric heat pumps fed by cogenerated electricity. Such trigeneration or Combined Cooling Heat and Power (CCHP) systems potentially boast significant energy saving characteristics with respect to the traditional separate generation of electricity (from large power plants), heat (in boilers) and cooling power (in electric chillers). In this paper, a specific high-efficiency composite scheme, in which a cogeneration prime mover, an absorption chiller, and an electrical heat pump are combined all together, is illustrated and discussed. The performance of this system is assessed through the Trigeneration Primary Energy Saving (TPES) indicator, previously introduced by the authors. Performance maps for equipment available on the market are drawn, through which it is possible to evaluate the plant energy performance at every operating point. Sensitivity studies are provided to point out the influence of the different variables and parameters on the plant performance characteristics.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Small-scale cogeneration prime movers (below 1 MWJ such as microturbines and internal combustion engines can be effectively coupled to absorption chillers fed by cogenerated heat and/or electric heat pumps fed by cogenerated electricity. Such trigeneration or Combined Cooling Heat and Power (CCHP) systems potentially boast significant energy saving characteristics with respect to the traditional separate generation of electricity (from large power plants), heat (in boilers) and cooling power (in electric chillers). In this paper, a specific high-efficiency composite scheme, in which a cogeneration prime mover, an absorption chiller, and an electrical heat pump are combined all together, is illustrated and discussed. The performance of this system is assessed through the Trigeneration Primary Energy Saving (TPES) indicator, previously introduced by the authors. Performance maps for equipment available on the market are drawn, through which it is possible to evaluate the plant energy performance at every operating point. Sensitivity studies are provided to point out the influence of the different variables and parameters on the plant performance characteristics.
提高复合三联发电系统的节能性能
小型热电联产原动机(低于1mwj,例如微型涡轮机和内燃机)可以有效地与热电联产的吸收式制冷机和/或热电联产的电热泵相结合。这种三联产或冷热电联产(CCHP)系统与传统的单独发电(来自大型发电厂)、供热(在锅炉中)和制冷(在电冷却器中)相比,可能具有显著的节能特性。本文对热电联产原动机、吸收式制冷机和电热泵相结合的高效组合方案进行了阐述和讨论。该系统的性能通过笔者之前介绍的三联发电一次节能(TPES)指标进行评估。绘制了市场上可用设备的性能图,通过它可以评估工厂在每个操作点的能源性能。灵敏度研究指出了不同的变量和参数对植物性能特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信