Daily streamflow forecasting for Paraíba do Sul river using machine learning methods with hydrologic inputs

Y. Gorodetskaya, L. G. Fonseca, Gisele Goulart Tavares, C. B. M. Ribeiro
{"title":"Daily streamflow forecasting for Paraíba do Sul river using machine learning methods with hydrologic inputs","authors":"Y. Gorodetskaya, L. G. Fonseca, Gisele Goulart Tavares, C. B. M. Ribeiro","doi":"10.5753/ENIAC.2018.4413","DOIUrl":null,"url":null,"abstract":"The Paraíba do Sul river flows through the most important industrial region of Brazil and its basin is characterized by conflicts of multiple uses of its water resources. The prediction of its natural flow has strategic value for water management in this basin. This research investigates the applicability of the two machine learning methods (Random Forest and Artificial Neural Networks) for daily streamflow forecasting of the Paraíba do Sul River at lead times of 1-7 days. The impact of fluviometric and pluviometric data from other basin sites on the quality of the forecast is also evaluated.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Paraíba do Sul river flows through the most important industrial region of Brazil and its basin is characterized by conflicts of multiple uses of its water resources. The prediction of its natural flow has strategic value for water management in this basin. This research investigates the applicability of the two machine learning methods (Random Forest and Artificial Neural Networks) for daily streamflow forecasting of the Paraíba do Sul River at lead times of 1-7 days. The impact of fluviometric and pluviometric data from other basin sites on the quality of the forecast is also evaluated.
利用水文输入的机器学习方法预测Paraíba do Sul河的日流量
Paraíba do Sul河流经巴西最重要的工业区,其流域的特点是水资源多种用途的冲突。其自然流量预测对该流域的水资源管理具有战略意义。本研究探讨了两种机器学习方法(随机森林和人工神经网络)在提前1-7天的Paraíba do Sul河每日流量预测中的适用性。本文还评价了其他流域站点的河流和降水资料对预报质量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信