Machine Learning based Design Optimization of a GPS Antenna on a flexible substrate

M. Ghazali, Saranraj Karuppuswami, M. Jamaluddin
{"title":"Machine Learning based Design Optimization of a GPS Antenna on a flexible substrate","authors":"M. Ghazali, Saranraj Karuppuswami, M. Jamaluddin","doi":"10.1109/APACE53143.2021.9760562","DOIUrl":null,"url":null,"abstract":"In this work, a machine learning optimized folded dipole antenna is presented for automotive GPS applications with wide band and good antenna performance characteristics. The optimization routine uses a regression based supervised machine learning algorithm, modified extensible lattice sequence (Mels) to develop a surrogate mathematical model from the physical antenna model. A Global Response Search Method (GRSM) optimization technique is used for optimizing the surrogate mathematical model to achieve the desired antenna performance such as high gain, low reflection coefficient, and wide bandwidth. The antenna is designed on a flexible Polyethylene terephthalate (PET) substrate to make it compatible with easier integration in a smaller lattice space. The designed antenna has a bandwidth of 182 MHz in L band with a gain of 1.9 dBi.","PeriodicalId":177263,"journal":{"name":"2021 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APACE53143.2021.9760562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, a machine learning optimized folded dipole antenna is presented for automotive GPS applications with wide band and good antenna performance characteristics. The optimization routine uses a regression based supervised machine learning algorithm, modified extensible lattice sequence (Mels) to develop a surrogate mathematical model from the physical antenna model. A Global Response Search Method (GRSM) optimization technique is used for optimizing the surrogate mathematical model to achieve the desired antenna performance such as high gain, low reflection coefficient, and wide bandwidth. The antenna is designed on a flexible Polyethylene terephthalate (PET) substrate to make it compatible with easier integration in a smaller lattice space. The designed antenna has a bandwidth of 182 MHz in L band with a gain of 1.9 dBi.
基于机器学习的柔性基板GPS天线设计优化
在这项工作中,提出了一种机器学习优化的折叠偶极子天线,该天线具有宽带和良好的天线性能特征。优化程序使用基于回归的监督机器学习算法,改进的可扩展晶格序列(Mels)从物理天线模型开发代理数学模型。采用全局响应搜索法(Global Response Search Method, GRSM)优化技术对代理数学模型进行优化,以达到高增益、低反射系数、宽频宽的天线性能要求。该天线设计在柔性聚对苯二甲酸乙二醇酯(PET)基板上,使其在更小的晶格空间中更容易集成。设计的天线在L波段带宽为182mhz,增益为1.9 dBi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信