A cavity Green's function boundary element method for the modeling of reverberation chambers: Validation against measurements

M. E. Gruber, T. Eibert
{"title":"A cavity Green's function boundary element method for the modeling of reverberation chambers: Validation against measurements","authors":"M. E. Gruber, T. Eibert","doi":"10.1109/ISEMC.2015.7256224","DOIUrl":null,"url":null,"abstract":"A hybrid cavity Green's function boundary element method with spectral domain acceleration for the modeling of reverberation chambers is for the first time validated against measurements. The numerical model is optimized for computational speed: geometrical details, such as cables or the stirrer axis, are neglected; the excitation antenna is modeled as a dipole; and losses of the cavity walls and all other objects are approximately handled by complexification of the wavenumber. Despite the coarseness of the model, the numerical results are in good agreement with the measurements for statistical quantities, such as the number of independent stirrer positions.","PeriodicalId":412708,"journal":{"name":"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2015.7256224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A hybrid cavity Green's function boundary element method with spectral domain acceleration for the modeling of reverberation chambers is for the first time validated against measurements. The numerical model is optimized for computational speed: geometrical details, such as cables or the stirrer axis, are neglected; the excitation antenna is modeled as a dipole; and losses of the cavity walls and all other objects are approximately handled by complexification of the wavenumber. Despite the coarseness of the model, the numerical results are in good agreement with the measurements for statistical quantities, such as the number of independent stirrer positions.
混响室建模的腔格林函数边界元法:测量验证
本文首次用谱域加速的混合腔格林函数边界元法对混响室进行了数值模拟。为了提高计算速度,对数值模型进行了优化:忽略了电缆或搅拌器轴等几何细节;激励天线采用偶极子模型;并且通过波数的复化近似处理了腔壁和所有其他物体的损失。尽管模型粗糙,但数值结果与统计量(如独立搅拌器位置的数量)的测量结果很好地吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信