Differential Evolution Based Parameters Selection for Support Vector Machine

Li Jun, Ding Lixin, Xing Ying
{"title":"Differential Evolution Based Parameters Selection for Support Vector Machine","authors":"Li Jun, Ding Lixin, Xing Ying","doi":"10.1109/CIS.2013.67","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of SVM parameter optimization. The authors propose an SVM classification system based on differential evolution(DE) to improve the generalization performance of the SVM classifier. For this purpose, the authors have optimized the SVM classifier design by searching for the best value of the parameters that tune its discriminant function. The experiments are conducted on the basis of benchmark dataset. The obtained results clearly confirm the superiority of the DE-SVM approach compared to default parameters SVM classifier and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed DE-SVM classification system.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper addresses the problem of SVM parameter optimization. The authors propose an SVM classification system based on differential evolution(DE) to improve the generalization performance of the SVM classifier. For this purpose, the authors have optimized the SVM classifier design by searching for the best value of the parameters that tune its discriminant function. The experiments are conducted on the basis of benchmark dataset. The obtained results clearly confirm the superiority of the DE-SVM approach compared to default parameters SVM classifier and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed DE-SVM classification system.
基于差分进化的支持向量机参数选择
本文研究支持向量机的参数优化问题。为了提高支持向量机分类器的泛化性能,提出了一种基于差分进化的支持向量机分类系统。为此,作者通过搜索调整其判别函数的参数的最佳值来优化SVM分类器设计。实验在基准数据集的基础上进行。得到的结果清楚地证实了DE-SVM方法相对于默认参数SVM分类器的优越性,并表明所提出的DE-SVM分类系统在分类精度方面可以得到进一步的大幅度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信