HMA-Depth: A New Monocular Depth Estimation Model Using Hierarchical Multi-Scale Attention

Zhaofeng Niu, Yuichiro Fujimoto, M. Kanbara, H. Kato
{"title":"HMA-Depth: A New Monocular Depth Estimation Model Using Hierarchical Multi-Scale Attention","authors":"Zhaofeng Niu, Yuichiro Fujimoto, M. Kanbara, H. Kato","doi":"10.23919/MVA51890.2021.9511345","DOIUrl":null,"url":null,"abstract":"Monocular depth estimation is an essential technique for tasks like 3D reconstruction. Although many works have emerged in recent years, they can be improved by better utilizing the multi-scale information of the input images, which is proved to be one of the keys in generating high-quality depth estimations. In this paper, we propose a new monocular depth estimation method named HMA-Depth, in which we follow the encoder-decoder scheme and combine several techniques such as skip connections and the atrous spatial pyramid pooling. To obtain more precise local information from the image while keeping a good understanding of the global context, a hierarchical multi-scale attention module is adopted and its outputs are combined to generate the final output that is with both good details and good overall accuracy. Experimental results on two commonly-used datasets prove that HMA-Depth can outperform the existing approaches. Code is available11https://github.com/saranew/HMADepth.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monocular depth estimation is an essential technique for tasks like 3D reconstruction. Although many works have emerged in recent years, they can be improved by better utilizing the multi-scale information of the input images, which is proved to be one of the keys in generating high-quality depth estimations. In this paper, we propose a new monocular depth estimation method named HMA-Depth, in which we follow the encoder-decoder scheme and combine several techniques such as skip connections and the atrous spatial pyramid pooling. To obtain more precise local information from the image while keeping a good understanding of the global context, a hierarchical multi-scale attention module is adopted and its outputs are combined to generate the final output that is with both good details and good overall accuracy. Experimental results on two commonly-used datasets prove that HMA-Depth can outperform the existing approaches. Code is available11https://github.com/saranew/HMADepth.
HMA-Depth:一种新的基于层次多尺度注意的单目深度估计模型
单目深度估计是三维重建等任务的基本技术。尽管近年来出现了许多研究成果,但可以通过更好地利用输入图像的多尺度信息来改进它们,这被证明是生成高质量深度估计的关键之一。本文提出了一种新的单目深度估计方法HMA-Depth,该方法采用编码器-解码器方案,结合跳跃连接和空间金字塔池等多种技术。为了从图像中获得更精确的局部信息,同时保持对全局上下文的良好理解,我们采用了分层的多尺度关注模块,并将其输出结合起来,生成具有良好细节和良好整体精度的最终输出。在两个常用数据集上的实验结果表明,HMA-Depth方法优于现有方法。代码可获得11https://github.com/saranew/HMADepth。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信