Tran Anh Khoa, Dinh Nguyen The Truong, Duc Ngoc Minh Dang
{"title":"Cross-Modal Deep Neural Networks based Smartphone Authentication for Intelligent Things System","authors":"Tran Anh Khoa, Dinh Nguyen The Truong, Duc Ngoc Minh Dang","doi":"10.1145/3463944.3469101","DOIUrl":null,"url":null,"abstract":"Nowadays, identity authentication technology, including biometric identification features such as iris and fingerprints, plays an essential role in the safety of intelligent devices. However, it cannot implement real-time and continuous identification of user identity. This paper presents a framework for user authentication from motion signals such as accelerometers and gyroscope signals powered received from smartphones. The proposed innovation scheme including i) a data preprocessing, ii) a novel feature extraction and authentication scheme based on a cross-modal deep neural network by applying a time-distributed Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) models. The experimental results of the proposed scheme show the advantage of our approach against methods.","PeriodicalId":394510,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463944.3469101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nowadays, identity authentication technology, including biometric identification features such as iris and fingerprints, plays an essential role in the safety of intelligent devices. However, it cannot implement real-time and continuous identification of user identity. This paper presents a framework for user authentication from motion signals such as accelerometers and gyroscope signals powered received from smartphones. The proposed innovation scheme including i) a data preprocessing, ii) a novel feature extraction and authentication scheme based on a cross-modal deep neural network by applying a time-distributed Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) models. The experimental results of the proposed scheme show the advantage of our approach against methods.