Distributed quasi-Monte Carlo methods in a heterogeneous environment

E. Doncker, Rodger Zanny, M. Ciobanu, Yuqiang Guan
{"title":"Distributed quasi-Monte Carlo methods in a heterogeneous environment","authors":"E. Doncker, Rodger Zanny, M. Ciobanu, Yuqiang Guan","doi":"10.1109/HCW.2000.843744","DOIUrl":null,"url":null,"abstract":"We present an asynchronous quasi-Monte Carlo (QMC) algorithm for numerical integration tailored for heterogeneous environments. QMC techniques are better suited for high dimensions than adaptive methods and have generally better convergence properties than classical Monte Carlo methods. The algorithm focuses on the asynchronous computation of randomized lattice (Korobov) rules. Whereas the individual rules disallow realistic error estimates, randomization provides a tool for giving confidence intervals for the magnitude of the error. The algorithm generates a sequence of stochastic families, using an increasing number of points, for the purpose of automatic termination. In the algorithm, each each randomized rule constitutes a single unit of work; a work assignment consists of a set of work units. Static and dynamic load balancing strategies are explored to keep the processors busy performing useful work while gradually calculating higher-level families needed to reach the desired accuracy. We present results in the context of a performance model for parallel programs executing in a heterogeneous environment.","PeriodicalId":351836,"journal":{"name":"Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HCW.2000.843744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We present an asynchronous quasi-Monte Carlo (QMC) algorithm for numerical integration tailored for heterogeneous environments. QMC techniques are better suited for high dimensions than adaptive methods and have generally better convergence properties than classical Monte Carlo methods. The algorithm focuses on the asynchronous computation of randomized lattice (Korobov) rules. Whereas the individual rules disallow realistic error estimates, randomization provides a tool for giving confidence intervals for the magnitude of the error. The algorithm generates a sequence of stochastic families, using an increasing number of points, for the purpose of automatic termination. In the algorithm, each each randomized rule constitutes a single unit of work; a work assignment consists of a set of work units. Static and dynamic load balancing strategies are explored to keep the processors busy performing useful work while gradually calculating higher-level families needed to reach the desired accuracy. We present results in the context of a performance model for parallel programs executing in a heterogeneous environment.
异构环境下的分布式拟蒙特卡罗方法
我们提出了一种适合于异构环境的异步准蒙特卡罗(QMC)数值积分算法。QMC技术比自适应方法更适合于高维,并且通常比经典蒙特卡罗方法具有更好的收敛性。该算法侧重于随机格(Korobov)规则的异步计算。虽然个别规则不允许实际的误差估计,但随机化提供了一个工具,可以为误差的大小提供置信区间。该算法生成随机族序列,使用越来越多的点,以达到自动终止的目的。在算法中,每条随机规则构成一个单独的工作单元;工作分配由一组工作单元组成。研究了静态和动态负载平衡策略,以使处理器忙于执行有用的工作,同时逐步计算达到所需精度所需的更高级别族。我们在异构环境中执行并行程序的性能模型的上下文中给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信