A Comparison of the Undetermined Coefficient Method and the Adomian Decomposition Method for the Solutions of the Sasa-Satsuma Equation

M. Asma
{"title":"A Comparison of the Undetermined Coefficient Method and the Adomian Decomposition Method for the Solutions of the Sasa-Satsuma Equation","authors":"M. Asma","doi":"10.5772/intechopen.101817","DOIUrl":null,"url":null,"abstract":"This chapter will talk about the mathematical as well as numerical aspects of the Sasa-Satsuma equation that is the extended nontrivial version of nonlinear Schrödinger’s equation. The exact solution will be found out by the undetermined coefficient method. After that, the Adomian decomposition method is secure numerical simulations of computed analytical solutions. The error plots are given to see the accuracy of the results.","PeriodicalId":184064,"journal":{"name":"The Nonlinear Schrödinger Equation [Working Title]","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Nonlinear Schrödinger Equation [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.101817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter will talk about the mathematical as well as numerical aspects of the Sasa-Satsuma equation that is the extended nontrivial version of nonlinear Schrödinger’s equation. The exact solution will be found out by the undetermined coefficient method. After that, the Adomian decomposition method is secure numerical simulations of computed analytical solutions. The error plots are given to see the accuracy of the results.
待定系数法与Adomian分解法求解Sasa-Satsuma方程的比较
本章将讨论Sasa-Satsuma方程的数学和数值方面,Sasa-Satsuma方程是非线性Schrödinger方程的扩展非平凡版本。用待定系数法求出精确解。之后,Adomian分解方法得到了安全的数值模拟计算解析解。给出了误差图,以检验结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信