Expectation-Maximization with Distance Measure for Color Image Segmentation

M. S. Nair, R. Rajasree, J. John, M. Wilscy
{"title":"Expectation-Maximization with Distance Measure for Color Image Segmentation","authors":"M. S. Nair, R. Rajasree, J. John, M. Wilscy","doi":"10.1109/ICIINFS.2008.4798338","DOIUrl":null,"url":null,"abstract":"In this paper we propose an expectation-maximization (EM) algorithm with distance measure for color image segmentation. The probability distribution model used is the Gaussian mixture model. The concept of color distance measure is used in this algorithm to determine the region to which a particular pixel belongs. L *a* b color space is used to replace the more straightforward spaces such as the RGB color space and YUV color space. This algorithm is capable of automatically selecting the number of components of the model using minimum description length (MDL) criterion. The proposed method yields good segmentation with better PSNR and SSIM values compared to classical EM algorithm; that is, the segmented image will be structurally more similar to the original image.","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we propose an expectation-maximization (EM) algorithm with distance measure for color image segmentation. The probability distribution model used is the Gaussian mixture model. The concept of color distance measure is used in this algorithm to determine the region to which a particular pixel belongs. L *a* b color space is used to replace the more straightforward spaces such as the RGB color space and YUV color space. This algorithm is capable of automatically selecting the number of components of the model using minimum description length (MDL) criterion. The proposed method yields good segmentation with better PSNR and SSIM values compared to classical EM algorithm; that is, the segmented image will be structurally more similar to the original image.
基于距离度量的期望最大化彩色图像分割
提出了一种带距离度量的期望最大化(EM)彩色图像分割算法。所使用的概率分布模型为高斯混合模型。该算法使用颜色距离度量的概念来确定特定像素所属的区域。L *a* b色彩空间是用来代替更直接的空间,如RGB色彩空间和YUV色彩空间。该算法采用最小描述长度(minimum description length, MDL)准则自动选择模型的分量个数。与传统的电磁分割算法相比,该方法具有更好的PSNR和SSIM值;也就是说,分割后的图像在结构上更接近原始图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信