Patrick Rippl, Johannes Iberle, Marc A. Mutschler, Philipp A. Scharf, H. Mantz, T. Walter
{"title":"Analysis of pedestrian gait patterns using radar based Micro-Doppler Signatures for the protection of vulnerable road users","authors":"Patrick Rippl, Johannes Iberle, Marc A. Mutschler, Philipp A. Scharf, H. Mantz, T. Walter","doi":"10.1109/ICMIM48759.2020.9299029","DOIUrl":null,"url":null,"abstract":"This contribution provides an approach to isolate and mathematically describe the movement of single body parts in the context of Doppler radar measurements. Using a Fourier series approximation, the quasi-periodic Micro-Doppler signatures of single body parts, namely the torso and the knee, are displayed. The motion of these body parts show certain features as the coefficients of the approximation indicate. As a result, the Fourier coefficients deliver a characteristic pattern describing the Micro-Doppler signatures of the single body parts. The frequency component coincides with the stride rate of the pedestrian.","PeriodicalId":150515,"journal":{"name":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM48759.2020.9299029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This contribution provides an approach to isolate and mathematically describe the movement of single body parts in the context of Doppler radar measurements. Using a Fourier series approximation, the quasi-periodic Micro-Doppler signatures of single body parts, namely the torso and the knee, are displayed. The motion of these body parts show certain features as the coefficients of the approximation indicate. As a result, the Fourier coefficients deliver a characteristic pattern describing the Micro-Doppler signatures of the single body parts. The frequency component coincides with the stride rate of the pedestrian.