MRI discrimination by inter-slice similarities and kernel-based centered alignment

A. Álvarez-Meza, D. Cárdenas-Peña, G. Castellanos-Domínguez
{"title":"MRI discrimination by inter-slice similarities and kernel-based centered alignment","authors":"A. Álvarez-Meza, D. Cárdenas-Peña, G. Castellanos-Domínguez","doi":"10.1109/IWOBI.2014.6913955","DOIUrl":null,"url":null,"abstract":"Brain structure segmentation from 3D magnetic resonances image (MRI) allows supporting the analysis of physiological and pathological processes. Nonetheless, finding MRI relationships posses a challenge when analyzing in voxel-based high-dimensional spaces. We introduce a kernel-based representation approach to support MRI discrimination. In this sense, inherent Inter-Slice Kernel (ISK) relationship is employed to highlight brain structure distributions. Then, a generalized Euclidean metric is estimated by using a kernel-based centered alignment algorithm to code the correlation between MRI dependencies and prior demographic patient information. The proposed approach is tested on MRI data classification by considering patient gender and age categories. Attained results show how proposed methodology improves data interpretability and separability in comparison to state of the art algorithms based on MRI Voxel-wise features. Therefore, introduced kernel-based representation can be useful to support MRI clustering and similarity inference tasks that are required on template-based image segmentation and atlas construction.","PeriodicalId":433659,"journal":{"name":"3rd IEEE International Work-Conference on Bioinspired Intelligence","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd IEEE International Work-Conference on Bioinspired Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2014.6913955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Brain structure segmentation from 3D magnetic resonances image (MRI) allows supporting the analysis of physiological and pathological processes. Nonetheless, finding MRI relationships posses a challenge when analyzing in voxel-based high-dimensional spaces. We introduce a kernel-based representation approach to support MRI discrimination. In this sense, inherent Inter-Slice Kernel (ISK) relationship is employed to highlight brain structure distributions. Then, a generalized Euclidean metric is estimated by using a kernel-based centered alignment algorithm to code the correlation between MRI dependencies and prior demographic patient information. The proposed approach is tested on MRI data classification by considering patient gender and age categories. Attained results show how proposed methodology improves data interpretability and separability in comparison to state of the art algorithms based on MRI Voxel-wise features. Therefore, introduced kernel-based representation can be useful to support MRI clustering and similarity inference tasks that are required on template-based image segmentation and atlas construction.
基于层间相似性和核中心比对的MRI鉴别
脑结构分割从三维磁共振图像(MRI)允许支持生理和病理过程的分析。尽管如此,在基于体素的高维空间中分析时,寻找MRI关系具有挑战性。我们引入了一种基于核的表示方法来支持MRI识别。在这个意义上,利用固有的Inter-Slice Kernel (ISK)关系来突出大脑结构的分布。然后,使用基于核的中心对齐算法估计广义欧几里得度量,以编码MRI依赖关系与先前人口统计学患者信息之间的相关性。该方法在考虑患者性别和年龄分类的MRI数据分类上进行了测试。获得的结果表明,与基于MRI体素特征的最先进算法相比,所提出的方法如何提高数据的可解释性和可分离性。因此,引入的基于核的表示可用于支持基于模板的图像分割和图谱构建所需的MRI聚类和相似性推断任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信