Fuzzy Metric Space and Its Topological Properties

M. Masriani, Q. Aini, Syamsul Bahri
{"title":"Fuzzy Metric Space and Its Topological Properties","authors":"M. Masriani, Q. Aini, Syamsul Bahri","doi":"10.29303/emj.v4i2.95","DOIUrl":null,"url":null,"abstract":"The fuzzy set theory is mathematics that applies fuzziness characteristics, so that gives the truth value at interval [0,1]. It is different from the crisp set that gives a truth value of 0 if it is not a member and 1 if it is a member. The theory of fuzzy sets has been developed continuously by scientists. One of the developments of the fuzzy set is the fuzzy metric space which the definition was introduced by George and Veeramani. Based on the analysis results, it is found that every metric space X if and only if X is fuzzy metric space. As a result, the topological properties of the metric space still apply to the fuzzy metric space","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/emj.v4i2.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fuzzy set theory is mathematics that applies fuzziness characteristics, so that gives the truth value at interval [0,1]. It is different from the crisp set that gives a truth value of 0 if it is not a member and 1 if it is a member. The theory of fuzzy sets has been developed continuously by scientists. One of the developments of the fuzzy set is the fuzzy metric space which the definition was introduced by George and Veeramani. Based on the analysis results, it is found that every metric space X if and only if X is fuzzy metric space. As a result, the topological properties of the metric space still apply to the fuzzy metric space
模糊度量空间及其拓扑性质
模糊集理论是应用模糊特性给出区间[0,1]上的真值的数学。它不同于一个清晰的集合,如果它不是一个成员,它的真值为0,如果它是一个成员,它的真值为1。模糊集理论一直被科学家们不断地发展。模糊集的发展之一是模糊度量空间,它的定义是由George和Veeramani引入的。根据分析结果,发现每个度量空间X当且仅当X是模糊度量空间。因此,度量空间的拓扑性质仍然适用于模糊度量空间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信