Trace-Driven Memory Access Pattern Recognition in Computational Kernels

Eunjung Park, Christos Kartsaklis, T. Janjusic, John Cavazos
{"title":"Trace-Driven Memory Access Pattern Recognition in Computational Kernels","authors":"Eunjung Park, Christos Kartsaklis, T. Janjusic, John Cavazos","doi":"10.1145/2686745.2686748","DOIUrl":null,"url":null,"abstract":"Classifying memory access patterns is paramount to the selection of the right set of optimizations and determination of the parallelization strategy. Static analyses suffer from ambiguities present in source code, which modern compilation techniques, such as profile-guided optimization, alleviate by observing runtime behavior and feeding back into the compilation flow. This paper discusses a dynamic analysis technique for recognizing memory access patterns, with application to the stencils domain, and presents our design and C++ implementation using the memory-tracing tool Gleipnir. Finally, we evaluate and discuss the performance and matching capability of our classifiers in the context of the Polybench scientific benchmark suite, which includes both stencil and matrix computations.","PeriodicalId":367066,"journal":{"name":"Proceedings of the Second Workshop on Optimizing Stencil Computations","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Optimizing Stencil Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2686745.2686748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Classifying memory access patterns is paramount to the selection of the right set of optimizations and determination of the parallelization strategy. Static analyses suffer from ambiguities present in source code, which modern compilation techniques, such as profile-guided optimization, alleviate by observing runtime behavior and feeding back into the compilation flow. This paper discusses a dynamic analysis technique for recognizing memory access patterns, with application to the stencils domain, and presents our design and C++ implementation using the memory-tracing tool Gleipnir. Finally, we evaluate and discuss the performance and matching capability of our classifiers in the context of the Polybench scientific benchmark suite, which includes both stencil and matrix computations.
计算核中的跟踪驱动内存访问模式识别
对内存访问模式进行分类对于选择正确的优化集和确定并行化策略至关重要。静态分析受到源代码中存在的模糊性的影响,而现代编译技术,如配置文件引导的优化,通过观察运行时行为并反馈到编译流中来减轻这种模糊性。本文讨论了一种动态分析技术来识别内存访问模式,并将其应用于模板领域,给出了我们的设计和使用内存跟踪工具Gleipnir的c++实现。最后,我们在Polybench科学基准测试套件中评估和讨论了我们的分类器的性能和匹配能力,其中包括模板和矩阵计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信