{"title":"Ptolemy's Theorem","authors":"Lukas Bulwahn","doi":"10.3840/001707","DOIUrl":null,"url":null,"abstract":"This entry provides an analytic proof to Ptolemy’s Theorem using polar form transformation and trigonometric identities. In this formalization, we use ideas from John Harrison’s HOL Light formalization [1] and the proof sketch on the Wikipedia entry of Ptolemy’s Theorem [3]. This theorem is the 95th theorem of the Top 100 Theorems list [2].","PeriodicalId":280633,"journal":{"name":"Arch. Formal Proofs","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arch. Formal Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3840/001707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This entry provides an analytic proof to Ptolemy’s Theorem using polar form transformation and trigonometric identities. In this formalization, we use ideas from John Harrison’s HOL Light formalization [1] and the proof sketch on the Wikipedia entry of Ptolemy’s Theorem [3]. This theorem is the 95th theorem of the Top 100 Theorems list [2].