{"title":"Clustered Federated Multi-Task Learning with Non-IID Data","authors":"Yao Xiao, Jiangang Shu, Xiaohua Jia, Hejiao Huang","doi":"10.1109/ICPADS53394.2021.00012","DOIUrl":null,"url":null,"abstract":"Federated Learning enables the collaborative learning in cross-client scenarios while keeping the clients' data local for privacy. The presence of non-IID data is one of major challenges in federated learning. To deal with this statistic challenge, federated multi-task learning considers the local training for each client as a single task. However, all the clients must participate in each training round, and it is inapplicable to mobile or IOT devices with constrained communication capability. To achieve the communication-efficiency and high accuracy with non-IID data, we propose a clustered federated multi-task learning by exploring client clustering and multi-task learning. We measure the similarities of local data among clients indirectly through their models' parameters, and design a client clustering strategy to enable clients with similar data distribution into a same group. The limitation of full-participation can be eliminated through the way of model training for groups instead of individual clients. The convergence analysis and experimental evaluation on real-world datasets shows that our work outperforms the basic federated learning in accuracy and is also more communication-efficient than the existing federated multi-task learning.","PeriodicalId":309508,"journal":{"name":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS53394.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Federated Learning enables the collaborative learning in cross-client scenarios while keeping the clients' data local for privacy. The presence of non-IID data is one of major challenges in federated learning. To deal with this statistic challenge, federated multi-task learning considers the local training for each client as a single task. However, all the clients must participate in each training round, and it is inapplicable to mobile or IOT devices with constrained communication capability. To achieve the communication-efficiency and high accuracy with non-IID data, we propose a clustered federated multi-task learning by exploring client clustering and multi-task learning. We measure the similarities of local data among clients indirectly through their models' parameters, and design a client clustering strategy to enable clients with similar data distribution into a same group. The limitation of full-participation can be eliminated through the way of model training for groups instead of individual clients. The convergence analysis and experimental evaluation on real-world datasets shows that our work outperforms the basic federated learning in accuracy and is also more communication-efficient than the existing federated multi-task learning.