Characterizing and detecting malicious crowdsourcing

Tianyi Wang, G. Wang, Xing Li, Haitao Zheng, Ben Y. Zhao
{"title":"Characterizing and detecting malicious crowdsourcing","authors":"Tianyi Wang, G. Wang, Xing Li, Haitao Zheng, Ben Y. Zhao","doi":"10.1145/2486001.2491719","DOIUrl":null,"url":null,"abstract":"Popular Internet services in recent years have shown that remarkable things can be achieved by harnessing the power of the masses. However, crowd-sourcing systems also pose a real challenge to existing security mechanisms deployed to protect Internet services, particularly those tools that identify malicious activity by detecting activities of automated programs such as CAPTCHAs. In this work, we leverage access to two large crowdturfing sites to gather a large corpus of ground-truth data generated by crowdturfing campaigns. We compare and contrast this data with \"organic\" content generated by normal users to identify unique characteristics and potential signatures for use in real-time detectors. This poster describes first steps taken focused on crowdturfing campaigns targeting the Sina Weibo microblogging system. We describe our methodology, our data (over 290K campaigns, 34K worker accounts, 61 million tweets...), and some initial results.","PeriodicalId":159374,"journal":{"name":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486001.2491719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Popular Internet services in recent years have shown that remarkable things can be achieved by harnessing the power of the masses. However, crowd-sourcing systems also pose a real challenge to existing security mechanisms deployed to protect Internet services, particularly those tools that identify malicious activity by detecting activities of automated programs such as CAPTCHAs. In this work, we leverage access to two large crowdturfing sites to gather a large corpus of ground-truth data generated by crowdturfing campaigns. We compare and contrast this data with "organic" content generated by normal users to identify unique characteristics and potential signatures for use in real-time detectors. This poster describes first steps taken focused on crowdturfing campaigns targeting the Sina Weibo microblogging system. We describe our methodology, our data (over 290K campaigns, 34K worker accounts, 61 million tweets...), and some initial results.
表征和检测恶意众包
近年来流行的互联网服务表明,利用群众的力量可以取得非凡的成就。然而,众包系统也对保护互联网服务的现有安全机制构成了真正的挑战,特别是那些通过检测自动程序(如captcha)的活动来识别恶意活动的工具。在这项工作中,我们利用对两个大型众筹网站的访问来收集由众筹活动产生的大量真实数据。我们将这些数据与普通用户生成的“有机”内容进行比较和对比,以识别实时检测器中使用的独特特征和潜在签名。这张海报描述了针对新浪微博系统的众筹活动的第一步。我们描述了我们的方法、我们的数据(超过29万个活动、3.4万个员工账户、6100万条推文……)和一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信