Indoor localization of unmanned aerial vehicles based on RSSI

Biljana Risteska Stojkoska, Jordan Palikrushev, K. Trivodaliev, S. Kalajdziski
{"title":"Indoor localization of unmanned aerial vehicles based on RSSI","authors":"Biljana Risteska Stojkoska, Jordan Palikrushev, K. Trivodaliev, S. Kalajdziski","doi":"10.1109/EUROCON.2017.8011089","DOIUrl":null,"url":null,"abstract":"Nowadays, finding the Unmanned Aerial Vehicle (UAV) position in the absence of GPS is attractive and challenging problem in the research community. In this paper, we present a novel algorithm for mini UAV indoor localization based on distance measurements between the UAV and the existing infrastructure consisting of WiFi Access Points. Our algorithm uses two well-known techniques from the literature: Multi-dimensional Scaling (MDS) and Weighted Centroid Localization (WCL). Through extensive simulations we have shown that our algorithm is very suitable for indoor localization of mini UAVs. For small radio-range error, our algorithm exhibits a small localization error of less than 5% of the radio range.","PeriodicalId":114100,"journal":{"name":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2017.8011089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Nowadays, finding the Unmanned Aerial Vehicle (UAV) position in the absence of GPS is attractive and challenging problem in the research community. In this paper, we present a novel algorithm for mini UAV indoor localization based on distance measurements between the UAV and the existing infrastructure consisting of WiFi Access Points. Our algorithm uses two well-known techniques from the literature: Multi-dimensional Scaling (MDS) and Weighted Centroid Localization (WCL). Through extensive simulations we have shown that our algorithm is very suitable for indoor localization of mini UAVs. For small radio-range error, our algorithm exhibits a small localization error of less than 5% of the radio range.
基于RSSI的无人机室内定位
目前,在没有GPS的情况下,如何确定无人机的位置是一个具有挑战性的问题。在本文中,我们提出了一种基于无人机与现有WiFi接入点组成的基础设施之间距离测量的小型无人机室内定位算法。我们的算法使用了两种著名的技术:多维尺度(MDS)和加权质心定位(WCL)。仿真结果表明,该算法非常适用于小型无人机的室内定位。对于较小的无线电距离误差,我们的算法显示出较小的定位误差小于无线电距离的5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信