Method for predicting surgical complications

Anatoly Solomakha Anatoly Solomakha, V. Gorbachenko
{"title":"Method for predicting surgical complications","authors":"Anatoly Solomakha Anatoly Solomakha, V. Gorbachenko","doi":"10.33920/med-15-2104-06","DOIUrl":null,"url":null,"abstract":"he problem of predicting the risk of purulent-inflammatory complications after surgery in patients with purulent-destructive lung diseases is still unsolved. When analyzing a sample of 543 patients with purulent-destructive lung diseases in the Penza Regional Clinical Hospital, 45 (8.3 %) had purulent-inflammatory complications. The aim of the study is to create a neural network system for predicting the risk of surgical complications in patients with purulent-destructive lung diseases. As a result of this study, the technology of constructing neural network models for predicting complications in thoracic surgery was developed. In particular: methods of selection and transformation of features have been developed and the neural network system «Neuropredictor» has been developed, which has demonstrated high accuracy rates.","PeriodicalId":437500,"journal":{"name":"Hirurg (Surgeon)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hirurg (Surgeon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33920/med-15-2104-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

he problem of predicting the risk of purulent-inflammatory complications after surgery in patients with purulent-destructive lung diseases is still unsolved. When analyzing a sample of 543 patients with purulent-destructive lung diseases in the Penza Regional Clinical Hospital, 45 (8.3 %) had purulent-inflammatory complications. The aim of the study is to create a neural network system for predicting the risk of surgical complications in patients with purulent-destructive lung diseases. As a result of this study, the technology of constructing neural network models for predicting complications in thoracic surgery was developed. In particular: methods of selection and transformation of features have been developed and the neural network system «Neuropredictor» has been developed, which has demonstrated high accuracy rates.
预测手术并发症的方法
预测脓毒性肺疾病患者术后脓炎性并发症风险的问题仍未得到解决。在分析奔萨地区临床医院543例化脓性破坏性肺病患者的样本时,45例(8.3%)有化脓性炎症并发症。这项研究的目的是创建一个神经网络系统,用于预测化脓性破坏性肺部疾病患者手术并发症的风险。在此基础上,建立了预测胸外科并发症的神经网络模型技术。特别是:已经开发了选择和转换特征的方法,并开发了神经网络系统“神经预测器”,该系统已证明具有很高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信