CHAMPVis: Comparative Hierarchical Analysis of Microarchitectural Performance

Lillian Pentecost, Udit Gupta, Elisa Ngan, J. Beyer, Gu-Yeon Wei, D. Brooks, M. Behrisch
{"title":"CHAMPVis: Comparative Hierarchical Analysis of Microarchitectural Performance","authors":"Lillian Pentecost, Udit Gupta, Elisa Ngan, J. Beyer, Gu-Yeon Wei, D. Brooks, M. Behrisch","doi":"10.1109/ProTools49597.2019.00013","DOIUrl":null,"url":null,"abstract":"Performance analysis and optimization are essential tasks for hardware and software engineers. In the age of datacenter-scale computing, it is particularly important to conduct comparative performance analysis to understand discrepancies and limitations among different hardware systems and applications. However, there is a distinct lack of productive visualization tools for these comparisons. We present CHAMPVis, a web-based, interactive visualization tool that leverages the hierarchical organization of hardware systems to enable productive performance analysis. With CHAMPVis, users can make definitive performance comparisons across applications or hardware platforms. In addition, CHAMPVis provides methods to rank and cluster based on performance metrics to identify common optimization opportunities. Our thorough task analysis reveals three types of datacenter-scale performance analysis tasks: summarization, detailed comparative analysis, and interactive performance bottleneck identification. We propose techniques for each class of tasks including (1) 1-D feature space projection for similarity analysis; (2) Hierarchical parallel co-ordinates for comparative analysis; and (3) User interactions for rapid diagnostic queries to identify optimization targets. We evaluate CHAMPVis by analyzing standard datacenter applications and machine learning benchmarks in two different case studies.","PeriodicalId":418029,"journal":{"name":"2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ProTools49597.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Performance analysis and optimization are essential tasks for hardware and software engineers. In the age of datacenter-scale computing, it is particularly important to conduct comparative performance analysis to understand discrepancies and limitations among different hardware systems and applications. However, there is a distinct lack of productive visualization tools for these comparisons. We present CHAMPVis, a web-based, interactive visualization tool that leverages the hierarchical organization of hardware systems to enable productive performance analysis. With CHAMPVis, users can make definitive performance comparisons across applications or hardware platforms. In addition, CHAMPVis provides methods to rank and cluster based on performance metrics to identify common optimization opportunities. Our thorough task analysis reveals three types of datacenter-scale performance analysis tasks: summarization, detailed comparative analysis, and interactive performance bottleneck identification. We propose techniques for each class of tasks including (1) 1-D feature space projection for similarity analysis; (2) Hierarchical parallel co-ordinates for comparative analysis; and (3) User interactions for rapid diagnostic queries to identify optimization targets. We evaluate CHAMPVis by analyzing standard datacenter applications and machine learning benchmarks in two different case studies.
CHAMPVis:微架构性能的比较层次分析
性能分析和优化是硬件和软件工程师的基本任务。在数据中心规模的计算时代,进行比较性能分析以了解不同硬件系统和应用程序之间的差异和限制尤为重要。然而,对于这些比较,明显缺乏有效的可视化工具。我们提出CHAMPVis,一个基于网络的交互式可视化工具,它利用硬件系统的分层组织来实现高效的性能分析。使用CHAMPVis,用户可以跨应用程序或硬件平台进行明确的性能比较。此外,CHAMPVis还提供了基于性能指标进行排序和聚类的方法,以确定常见的优化机会。我们的全面任务分析揭示了三种类型的数据中心级性能分析任务:总结、详细比较分析和交互式性能瓶颈识别。我们为每一类任务提出了技术,包括:(1)用于相似性分析的一维特征空间投影;(2)层次平行坐标进行比较分析;(3)用于快速诊断查询的用户交互,以确定优化目标。我们通过分析两个不同案例研究中的标准数据中心应用程序和机器学习基准来评估CHAMPVis。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信