Unsupervised Representation Learning Method In Sensor Based Human Activity Recognition

Koki Takenaka, Tatsuhito Hasegawa
{"title":"Unsupervised Representation Learning Method In Sensor Based Human Activity Recognition","authors":"Koki Takenaka, Tatsuhito Hasegawa","doi":"10.1109/ICMLC56445.2022.9941334","DOIUrl":null,"url":null,"abstract":"Deep learning methods contribute to improve the estimation accuracy in human activity recognition (HAR) using sensor data. In general, the dataset used in HAR consists of accelerometer data and activity labels. Because of the widespread use of mobile devices, large amount of accelerometer sensor data without activity labels can be easily collected. The problem of annotation needs a large amount of time-consuming cost and human labor to annotate a activity labels to recorded sensor data. Therefore, we need a method to make deep learning models acquire feature representations from accelerometer data without activity labels in HAR. In this study, based on the unsupervised representation learning method proposed in image recognition, we proposed a new unsupervised representation learning method which combines segment discrimination (SD), autoencoder (AE) and feature independent softmax (FIS). Our experimental results showed that our proposed method outperformed the conventional method in fine-tuning accuracy in HAR.","PeriodicalId":117829,"journal":{"name":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC56445.2022.9941334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep learning methods contribute to improve the estimation accuracy in human activity recognition (HAR) using sensor data. In general, the dataset used in HAR consists of accelerometer data and activity labels. Because of the widespread use of mobile devices, large amount of accelerometer sensor data without activity labels can be easily collected. The problem of annotation needs a large amount of time-consuming cost and human labor to annotate a activity labels to recorded sensor data. Therefore, we need a method to make deep learning models acquire feature representations from accelerometer data without activity labels in HAR. In this study, based on the unsupervised representation learning method proposed in image recognition, we proposed a new unsupervised representation learning method which combines segment discrimination (SD), autoencoder (AE) and feature independent softmax (FIS). Our experimental results showed that our proposed method outperformed the conventional method in fine-tuning accuracy in HAR.
基于传感器的人体活动识别中的无监督表示学习方法
深度学习方法有助于提高利用传感器数据进行人体活动识别(HAR)的估计精度。一般来说,HAR中使用的数据集由加速度计数据和活动标签组成。由于移动设备的广泛使用,可以很容易地收集到大量没有活动标签的加速度计传感器数据。标注问题需要大量的时间成本和人力来标注一个活动标签到记录的传感器数据。因此,我们需要一种方法,使深度学习模型从HAR中没有活动标签的加速度计数据中获取特征表示。本研究在图像识别中的无监督表示学习方法的基础上,提出了一种结合片段识别(SD)、自动编码器(AE)和特征无关的softmax (FIS)的无监督表示学习方法。实验结果表明,本文提出的方法在HAR的微调精度上优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信