GitHub Issue Classification Using BERT-Style Models

Shikhar Bharadwaj, Tushar Kadam
{"title":"GitHub Issue Classification Using BERT-Style Models","authors":"Shikhar Bharadwaj, Tushar Kadam","doi":"10.1145/3528588.3528663","DOIUrl":null,"url":null,"abstract":"Recent innovations in natural language processing techniques have led to the development of various tools for assisting software developers. This paper provides a report of our proposed solution to the issue report classification task from the NL-Based Software Engineering workshop. We approach the task of classifying issues on GitHub repositories using BERT-style models [1, 2, 6, 8] We propose a neural architecture for the problem that utilizes contextual embeddings for the text content in the GitHub issues. Besides, we design additional features for the classification task. We perform a thorough ablation analysis of the designed features and benchmark various BERT-style models for generating textual embeddings. Our proposed solution performs better than the competition organizer’s method and achieves an F1 score of 0.8653. Our code and trained models are available at https://github.com/Kadam-Tushar/Issue-Classifier.","PeriodicalId":313397,"journal":{"name":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3528588.3528663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Recent innovations in natural language processing techniques have led to the development of various tools for assisting software developers. This paper provides a report of our proposed solution to the issue report classification task from the NL-Based Software Engineering workshop. We approach the task of classifying issues on GitHub repositories using BERT-style models [1, 2, 6, 8] We propose a neural architecture for the problem that utilizes contextual embeddings for the text content in the GitHub issues. Besides, we design additional features for the classification task. We perform a thorough ablation analysis of the designed features and benchmark various BERT-style models for generating textual embeddings. Our proposed solution performs better than the competition organizer’s method and achieves an F1 score of 0.8653. Our code and trained models are available at https://github.com/Kadam-Tushar/Issue-Classifier.
GitHub发布使用bert风格模型的分类
最近自然语言处理技术的创新导致了各种工具的发展,以帮助软件开发人员。本文提供了我们在基于自然语言的软件工程研讨会上提出的问题报告分类任务的解决方案。我们使用bert风格的模型来处理GitHub存储库上的问题分类任务[1,2,6,8]。我们提出了一种神经结构,该结构利用上下文嵌入来处理GitHub问题中的文本内容。此外,我们还为分类任务设计了额外的特征。我们对设计的特征进行了彻底的消融分析,并对各种bert风格的模型进行了基准测试,以生成文本嵌入。我们提出的解决方案比比赛组织者的方法性能更好,F1得分为0.8653。我们的代码和经过训练的模型可在https://github.com/Kadam-Tushar/Issue-Classifier上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信