Deep Transformer Network and CNN Model with About 200k Parameters to Classify P300 EEG Signal

Zhenis Otarbay, Merey Orazaly, Yerkegul Assaiyn, Sanzhar Chagirov, Sanzhar Pernebayev, Amir Tleuzhan
{"title":"Deep Transformer Network and CNN Model with About 200k Parameters to Classify P300 EEG Signal","authors":"Zhenis Otarbay, Merey Orazaly, Yerkegul Assaiyn, Sanzhar Chagirov, Sanzhar Pernebayev, Amir Tleuzhan","doi":"10.1109/SIST58284.2023.10223580","DOIUrl":null,"url":null,"abstract":"This research gathers participants“ electroencephalographic (EEG) data to build classifiers that can decode users” mental states. Although deep learning models can incorporate domain-dependent feature extraction into the classifier design, the architecture selection process for BCIs is often based on domain expertise. This paper examines whether it can build reliable classifiers for interpreting P300 event-related potentials using a systematic model selection mixed with common deep learning architectures. We report the findings of a CNNTransformer network model with 50k and 200k parameters in particular. We systematically investigate if a hybrid architecture which is Transformer and CNN, can improve the classification performance of P300 datasets. Because we would like to know how to improve the model selection process for P300 signals data analysis. To help the readers understand that the best model selection strategy with more muscular models than the existing ones may make the lives of stroke patients more convenient. If our readers are targeting to know the modern muscular deep learning architectures to analyze their recorded P300 dataset, then we recommend reading this paper.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research gathers participants“ electroencephalographic (EEG) data to build classifiers that can decode users” mental states. Although deep learning models can incorporate domain-dependent feature extraction into the classifier design, the architecture selection process for BCIs is often based on domain expertise. This paper examines whether it can build reliable classifiers for interpreting P300 event-related potentials using a systematic model selection mixed with common deep learning architectures. We report the findings of a CNNTransformer network model with 50k and 200k parameters in particular. We systematically investigate if a hybrid architecture which is Transformer and CNN, can improve the classification performance of P300 datasets. Because we would like to know how to improve the model selection process for P300 signals data analysis. To help the readers understand that the best model selection strategy with more muscular models than the existing ones may make the lives of stroke patients more convenient. If our readers are targeting to know the modern muscular deep learning architectures to analyze their recorded P300 dataset, then we recommend reading this paper.
深层变压器网络与约200k参数CNN模型对P300脑电信号进行分类
这项研究收集了参与者的脑电图(EEG)数据,建立了可以解码用户精神状态的分类器。尽管深度学习模型可以将领域相关的特征提取纳入分类器设计中,但bci的架构选择过程通常基于领域专业知识。本文研究了是否可以使用混合了常见深度学习架构的系统模型选择来构建可靠的分类器来解释P300事件相关电位。我们特别报告了具有50k和200k参数的CNNTransformer网络模型的发现。我们系统地研究了Transformer和CNN的混合架构是否可以提高P300数据集的分类性能。因为我们想知道如何改进P300信号数据分析的模型选择过程。帮助读者了解,与现有的模型相比,拥有更多肌肉模型的最佳模型选择策略可能会使中风患者的生活更加方便。如果我们的读者的目标是了解现代肌肉深度学习架构来分析他们记录的P300数据集,那么我们建议阅读这篇论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信