Adaptive shape prior in graph cut segmentation

Maddy Hui Wang, Hong Zhang
{"title":"Adaptive shape prior in graph cut segmentation","authors":"Maddy Hui Wang, Hong Zhang","doi":"10.1109/ICIP.2010.5653335","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method to adaptively apply shape prior in graph cut segmentation. By incorporating shape priors in an adaptive way, we introduce a robust way to harness shape prior in graph cut segmentation. Since traditional graph cut approaches with shape prior may fail in cases where parameters for shape prior term are not set appropriately, incorporation of shape priors adaptively within this framework mitigates these problems. To address this issue, we propose to adaptively apply shape prior based on a shape probability map, defined to reflect the need of shape prior at each location of an image. We show that the proposed method can be easily applied to existing algorithms of graph cut segmentation with shape prior, such as level set based shape prior method, and star shape prior graph cut. We validate our method in various types of images corrupted by significant noise and intensity inhomogeneities. Convincing results are obtained.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5653335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we propose a novel method to adaptively apply shape prior in graph cut segmentation. By incorporating shape priors in an adaptive way, we introduce a robust way to harness shape prior in graph cut segmentation. Since traditional graph cut approaches with shape prior may fail in cases where parameters for shape prior term are not set appropriately, incorporation of shape priors adaptively within this framework mitigates these problems. To address this issue, we propose to adaptively apply shape prior based on a shape probability map, defined to reflect the need of shape prior at each location of an image. We show that the proposed method can be easily applied to existing algorithms of graph cut segmentation with shape prior, such as level set based shape prior method, and star shape prior graph cut. We validate our method in various types of images corrupted by significant noise and intensity inhomogeneities. Convincing results are obtained.
图割分割中的自适应形状先验
本文提出了一种自适应地将形状先验应用于图割分割的新方法。通过自适应地结合形状先验,提出了一种鲁棒的利用形状先验进行图割分割的方法。由于具有形状先验的传统图割方法可能在形状先验项参数设置不适当的情况下失败,因此在该框架内自适应地结合形状先验可以减轻这些问题。为了解决这个问题,我们提出了一种基于形状概率图的自适应应用形状先验的方法,该方法的定义是反映图像每个位置的形状先验需求。结果表明,该方法可以很容易地应用于现有的基于形状先验的图割分割算法,如基于水平集的形状先验法和星形先验图割。我们在各种类型的图像中验证了我们的方法,这些图像被明显的噪声和强度不均匀性破坏。得到了令人信服的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信