{"title":"Clock routing for high-performance ICs","authors":"M. Jackson, A. Srinivasan, E. Kuh","doi":"10.1109/DAC.1990.114920","DOIUrl":null,"url":null,"abstract":"Routing techniques for optimizing clock signals in small-cell (e.g., standard-cell, sea-of-gate, etc.) application-specific ICs (ASICs) are addressed. In previously reported works, the routing of a clock net has been performed using ordinary global routing techniques based on a minimum spanning or minimal Steiner tree that have little understanding of clock-routing problems. The authors present a novel approach to the clock-routing that all but eliminates clock skew and yields excellent phase delay results for a wide range of chip sizes, net sizes (pin count), minimum feature sizes, and pin distributions on both randomly created and standard industrial benchmarks. For certain classes of pin distributions a decrease in skew with an increase in net size was proven theoretically and observed experimentally. A two to three order magnitude reduction in skew when compared to a minimum rectilinear spanning tree was observed.<<ETX>>","PeriodicalId":118552,"journal":{"name":"27th ACM/IEEE Design Automation Conference","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"232","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC.1990.114920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 232
Abstract
Routing techniques for optimizing clock signals in small-cell (e.g., standard-cell, sea-of-gate, etc.) application-specific ICs (ASICs) are addressed. In previously reported works, the routing of a clock net has been performed using ordinary global routing techniques based on a minimum spanning or minimal Steiner tree that have little understanding of clock-routing problems. The authors present a novel approach to the clock-routing that all but eliminates clock skew and yields excellent phase delay results for a wide range of chip sizes, net sizes (pin count), minimum feature sizes, and pin distributions on both randomly created and standard industrial benchmarks. For certain classes of pin distributions a decrease in skew with an increase in net size was proven theoretically and observed experimentally. A two to three order magnitude reduction in skew when compared to a minimum rectilinear spanning tree was observed.<>