Short term electrical load forecasting using back propagation neural networks

S. S. Reddy, J. Momoh
{"title":"Short term electrical load forecasting using back propagation neural networks","authors":"S. S. Reddy, J. Momoh","doi":"10.1109/NAPS.2014.6965453","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for short term electrical load forecasting (STLF) using artificial neural networks (ANN), and examines the feasibility of various mathematical models for STLF. To make these mathematical models to yield satisfactory and acceptable results, various system models are formulated considering various combination of parameters like base load component, day of the week, load inertia, short term trends, autocorrelation, length of the past data, etc. Various modifications of Back Propagation Algorithm (BPA) have been proposed, to explore the ideal combination that suit the forecasting need of large utilities like regional electricity grids. Further, the load dynamics are extensively studied to identify the parameters for system modeling.","PeriodicalId":421766,"journal":{"name":"2014 North American Power Symposium (NAPS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2014.6965453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper presents a new approach for short term electrical load forecasting (STLF) using artificial neural networks (ANN), and examines the feasibility of various mathematical models for STLF. To make these mathematical models to yield satisfactory and acceptable results, various system models are formulated considering various combination of parameters like base load component, day of the week, load inertia, short term trends, autocorrelation, length of the past data, etc. Various modifications of Back Propagation Algorithm (BPA) have been proposed, to explore the ideal combination that suit the forecasting need of large utilities like regional electricity grids. Further, the load dynamics are extensively studied to identify the parameters for system modeling.
基于反向传播神经网络的短期电力负荷预测
本文提出了一种利用人工神经网络进行短期电力负荷预测的新方法,并对各种数学模型的可行性进行了检验。为了使这些数学模型得到满意和可接受的结果,考虑基本负荷成分、星期几、负荷惯性、短期趋势、自相关、过去数据长度等参数的各种组合,制定了各种系统模型。人们提出了对反向传播算法(BPA)的各种修改,以探索适合区域电网等大型公用事业预测需求的理想组合。此外,还对负载动力学进行了广泛的研究,以确定系统建模的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信